File size: 1,992 Bytes
cc51b5b
 
5d40a09
 
cc51b5b
 
 
5d40a09
cc51b5b
 
5d40a09
cc51b5b
 
 
 
 
 
 
 
 
 
 
 
5559382
cc51b5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5559382
 
 
 
 
 
 
 
cc51b5b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
library_name: transformers
language:
- hi
license: mit
base_model: microsoft/speecht5_tts
tags:
- Hindi
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_17_0
model-index:
- name: Speect5-common-voice-Hindi
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Speect5-common-voice-Hindi

This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the common_voice_17_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4646

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 5.3349        | 0.3442 | 100  | 0.5973          |
| 4.7257        | 0.6885 | 200  | 0.5412          |
| 4.3821        | 1.0327 | 300  | 0.5127          |
| 4.283         | 1.3769 | 400  | 0.4926          |
| 4.1735        | 1.7212 | 500  | 0.4865          |
| 4.0968        | 2.0654 | 600  | 0.4790          |
| 4.0861        | 2.4096 | 700  | 0.4687          |
| 3.9972        | 2.7539 | 800  | 0.4646          |


### Framework versions

- Transformers 4.46.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1