Update README.md
Browse files
README.md
CHANGED
@@ -38,40 +38,78 @@ dtype: bfloat16
|
|
38 |
|
39 |
## 💻 Usage
|
40 |
|
41 |
-
/
|
42 |
|
43 |
```python
|
44 |
!pip install -qU transformers accelerate
|
45 |
|
46 |
-
from transformers import AutoTokenizer
|
47 |
-
import transformers
|
48 |
import torch
|
49 |
|
50 |
-
|
51 |
-
|
|
|
52 |
|
53 |
-
|
|
|
54 |
|
55 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
def custom_chat_template(messages):
|
57 |
chat_prompt = ""
|
58 |
for message in messages:
|
59 |
role = message["role"]
|
60 |
content = message["content"]
|
61 |
chat_prompt += f"{role}: {content}\n"
|
|
|
|
|
62 |
return chat_prompt
|
63 |
|
|
|
64 |
prompt = custom_chat_template(messages)
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
#
|
67 |
-
|
|
|
|
|
|
|
|
|
68 |
"text-generation",
|
69 |
model=model,
|
|
|
|
|
70 |
torch_dtype=torch.float16,
|
71 |
-
|
72 |
-
trust_remote_code=True,
|
73 |
)
|
74 |
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
```
|
|
|
38 |
|
39 |
## 💻 Usage
|
40 |
|
41 |
+
/Due to the jais family tokenizer deployment with trust remote code, especially if handling Arabic, the following implementation is suggested for inferencing this merge model/
|
42 |
|
43 |
```python
|
44 |
!pip install -qU transformers accelerate
|
45 |
|
46 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
|
47 |
import torch
|
48 |
|
49 |
+
# Model and message setup
|
50 |
+
model_name = "Solshine/Jais-590m-merged"
|
51 |
+
user_message = "Explain how transformers work in machine learning" # This can be any user input
|
52 |
|
53 |
+
# Structure the message with role-content pairing for compatibility with Jais-chat format
|
54 |
+
messages = [{"role": "user", "content": user_message}]
|
55 |
|
56 |
+
# Initialize tokenizer with trust_remote_code for custom Arabic-English handling
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
58 |
+
|
59 |
+
# Check if tokenizer is valid
|
60 |
+
if tokenizer is None:
|
61 |
+
raise ValueError("Tokenizer initialization failed!")
|
62 |
+
|
63 |
+
# Custom chat template including assistant role
|
64 |
def custom_chat_template(messages):
|
65 |
chat_prompt = ""
|
66 |
for message in messages:
|
67 |
role = message["role"]
|
68 |
content = message["content"]
|
69 |
chat_prompt += f"{role}: {content}\n"
|
70 |
+
# Add assistant role to prompt the model's response
|
71 |
+
chat_prompt += "assistant:"
|
72 |
return chat_prompt
|
73 |
|
74 |
+
# Generate the prompt
|
75 |
prompt = custom_chat_template(messages)
|
76 |
+
print(f"Generated prompt:\n{prompt}")
|
77 |
+
|
78 |
+
# Initialize the model
|
79 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
80 |
+
if model is None:
|
81 |
+
raise ValueError("Model initialization failed!")
|
82 |
|
83 |
+
# Move model to the appropriate device
|
84 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
85 |
+
model.to(device)
|
86 |
+
|
87 |
+
# Initialize the text generation pipeline
|
88 |
+
text_gen_pipeline = pipeline(
|
89 |
"text-generation",
|
90 |
model=model,
|
91 |
+
tokenizer=tokenizer,
|
92 |
+
device=device,
|
93 |
torch_dtype=torch.float16,
|
94 |
+
trust_remote_code=True
|
|
|
95 |
)
|
96 |
|
97 |
+
# Generate text
|
98 |
+
try:
|
99 |
+
outputs = text_gen_pipeline(
|
100 |
+
prompt,
|
101 |
+
max_new_tokens=256,
|
102 |
+
do_sample=True,
|
103 |
+
temperature=0.7,
|
104 |
+
top_k=50,
|
105 |
+
top_p=0.95,
|
106 |
+
pad_token_id=tokenizer.eos_token_id # Ensure proper stopping
|
107 |
+
)
|
108 |
+
# Extract and print the assistant's response
|
109 |
+
generated_text = outputs[0]["generated_text"]
|
110 |
+
assistant_response = generated_text.split("assistant:")[1].strip()
|
111 |
+
print(f"Assistant's response:\n{assistant_response}")
|
112 |
+
except Exception as e:
|
113 |
+
print(f"Error during text generation: {e}")
|
114 |
+
|
115 |
```
|