--- base_model: - inceptionai/jais-family-590m - inceptionai/jais-family-590m tags: - merge - mergekit - lazymergekit - inceptionai/jais-family-590m --- # Jais-590m-merged Jais-590m-merged is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [inceptionai/jais-family-590m](https://huggingface.co/inceptionai/jais-family-590m) * [inceptionai/jais-family-590m](https://huggingface.co/inceptionai/jais-family-590m) ## 🧩 Configuration ```yaml slices: - sources: - model: inceptionai/jais-family-590m layer_range: [0, 18] - model: inceptionai/jais-family-590m layer_range: [0, 18] merge_method: slerp base_model: inceptionai/jais-family-590m parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Solshine/Jais-590m-merged" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model, trust_remote_code=True) # Manually apply a basic chat template since it's not provided by the model def custom_chat_template(messages): chat_prompt = "" for message in messages: role = message["role"] content = message["content"] chat_prompt += f"{role}: {content}\n" return chat_prompt prompt = custom_chat_template(messages) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True, ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```