File size: 12,455 Bytes
36e08c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
"""
configuration_prismatic.py

HuggingFace-style configuration definition for Prismatic VLMs, inheriting from `transformers.PretrainedConfig`.
Default configuration specifies `siglip-224px+7b`.
"""

from typing import Any, Dict, List, Optional
import transformers
from transformers import PretrainedConfig
from transformers.models.auto import CONFIG_MAPPING
import numpy as np

# === Utilities for Mapping Prismatic names to HF names ===
# fmt: off
VISION_BACKBONE_TO_RESOLUTION: Dict[str, List[int]] = {
    "clip-vit-l": [224], "siglip-vit-so400m": [224], "dinov2-vit-l": [224], "in1k-vit-l": [224],

    "clip-vit-l-336px": [336],
    "siglip-vit-so400m-384px": [384],

    "dinoclip-vit-l-336px": [336, 336],
    "dinosiglip-vit-so-224px": [224, 224],
    "dinosiglip-vit-so-384px": [384, 384],
}
VISION_BACKBONE_TO_TIMM_ID: Dict[str, List[str]] = {
    "clip-vit-l": ["vit_large_patch14_clip_224.openai"],
    "clip-vit-l-336px": ["vit_large_patch14_clip_336.openai"],

    "dinov2-vit-l": ["vit_large_patch14_reg4_dinov2.lvd142m"],
    "in1k-vit-l": ["vit_large_patch16_224.augreg_in21k_ft_in1k"],

    "siglip-vit-so400m": ["vit_so400m_patch14_siglip_224"],
    "siglip-vit-so400m-384px": ["vit_so400m_patch14_siglip_384"],

    "dinoclip-vit-l-336px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_large_patch14_clip_336.openai"],
    "dinosiglip-vit-so-224px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_so400m_patch14_siglip_224"],
    "dinosiglip-vit-so-384px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_so400m_patch14_siglip_384"],
}
TIMM_OVERRIDE_ACT_LAYER: Dict[str, List[Optional[str]]] = {
    "clip-vit-l": ["quick_gelu"], "clip-vit-l-336px": ["quick_gelu"],
    "dinov2-vit-l": [None], "in1k-vit-l": [None],
    "siglip-vit-so400m": [None], "siglip-vit-so400m-384px": [None],
    "dinoclip-vit-l-336px": [None, "quick_gelu"],
    "dinosiglip-vit-so-224px": [None, None], "dinosiglip-vit-so-384px": [None, None]
}

LLM_BACKBONE_TO_HF_PATH = {
    "llama2-7b-pure": "meta-llama/Llama-2-7b-hf", "llama2-13b-pure": "meta-llama/Llama-2-13b-hf",
    "llama2-7b-chat": "meta-llama/Llama-2-7b-chat-hf", "llama2-13b-chat": "meta-llama/Llama-2-13b-chat-hf",

    "vicuna-v15-7b": "lmsys/vicuna-7b-v1.5", "vicuna-v15-13b": "lmsys/vicuna-13b-v1.5",

    "mistral-v0.1-7b-pure": "mistralai/Mistral-7B-v0.1",
    "mistral-v0.1-7b-instruct": "mistralai/Mistral-7B-Instruct-v0.1",

    "phi-2-3b": "microsoft/phi-2",
}
LLM_BACKBONE_TO_HF_METACLASS = {
    "llama2-7b-pure": "llama", "llama2-13b-pure": "llama", "llama2-7b-chat": "llama", "llama2-13b-chat": "llama",
    "vicuna-v15-7b": "llama", "vicuna-v15-13b": "llama",

    "mistral-v0.1-7b-pure": "mistral", "mistral-v0.1-7b-instruct": "mistral",

    "phi-2-3b": "phi",
}

VALID_VISION_BACKBONES = set(VISION_BACKBONE_TO_RESOLUTION.keys())
VALID_LLM_BACKBONES = set(LLM_BACKBONE_TO_HF_PATH)
# fmt: on

class WaypointTokenizer:
    """
    Wraps base LLM/VLM tokenizer and overloads least used token as a control token

    NOTE: By default, assumes a BPE-style tokenizer akin to the LlamaTokenizer,
        where *the least used tokens* appear at the end of the vocabulary!

    TODO: Adding new token vs overloading? When I call `tokenizer.add_token()` vocab stays the same
    """
    model_type = "waypointer"
    is_composition: bool = True
    def __init__(self, tokenizer: transformers.PreTrainedTokenizerBase, num_tokens: int = 10) -> None:
        self.tokenizer = tokenizer
        self.num_tokens = num_tokens

    def __call__(self, *_) -> str:
        """Get the text token for control"""
        return self.tokenizer.decode(self.control_token_ids)

    @property
    def control_token_ids(self) -> np.ndarray:
        # Assumes we're overwriting the final tokens of the vocabulary (least used tokens)
        return np.arange(self.num_tokens) + int(self.tokenizer.vocab_size - self.num_tokens)

    @property
    def num_control_tokens(self) -> int:
        return self.num_tokens

class PrismaticConfig(PretrainedConfig):
    model_type: str = "prismatic"
    is_composition: bool = False

    def __init__(
        self,
        vision_backbone_id: str = "dinosiglip-vit-so-224px",
        llm_backbone_id: str = "llama2-7b-pure",
        arch_specifier: str = "no-align+gelu-mlp", ## TODO: check
        use_fused_vision_backbone: Optional[bool] = None, ## TODO: check
        image_resize_strategy: str = "letterbox",
        text_config: Optional[Dict[str, Any]] = None,
        llm_max_length: int = 2048,
        pad_token_id: int = 32000,
        pad_to_multiple_of: int = 64,
        output_projector_states: bool = False,
        **kwargs: str,
    ) -> None:
        if vision_backbone_id not in VALID_VISION_BACKBONES:
            raise ValueError(f"Vision backbone `{vision_backbone_id}` not in {VALID_VISION_BACKBONES = }")

        if llm_backbone_id not in VALID_LLM_BACKBONES:
            raise ValueError(f"LLM backbone `{llm_backbone_id}` not in {VALID_LLM_BACKBONES = }")

        # Set Prismatic Configuration Fields
        self.vision_backbone_id = vision_backbone_id
        self.llm_backbone_id = llm_backbone_id
        self.arch_specifier = arch_specifier
        self.output_projector_states = output_projector_states

        # [Contract] All vision backbone parameters are lists =>> supports fused backbones with different preprocessing
        self.use_fused_vision_backbone = (
            use_fused_vision_backbone
            if use_fused_vision_backbone is not None
            else any(self.vision_backbone_id.startswith(v) for v in ["dinoclip", "dinosiglip"])
        )

        self.timm_model_ids = VISION_BACKBONE_TO_TIMM_ID[self.vision_backbone_id]
        self.timm_override_act_layers = TIMM_OVERRIDE_ACT_LAYER[self.vision_backbone_id]
        self.image_sizes = VISION_BACKBONE_TO_RESOLUTION[self.vision_backbone_id]
        self.image_resize_strategy = image_resize_strategy

        self.hf_llm_id = LLM_BACKBONE_TO_HF_PATH[self.llm_backbone_id]
        self.llm_max_length = llm_max_length
        self.pad_token_id, self.pad_to_multiple_of = pad_token_id, pad_to_multiple_of

        # [IMPORTANT] HF Utilities actually look for a `text_config` field... we need to use that specific naming!
        self.text_config = (
            CONFIG_MAPPING[LLM_BACKBONE_TO_HF_METACLASS[self.llm_backbone_id]](**text_config)
            if text_config is not None
            else CONFIG_MAPPING[LLM_BACKBONE_TO_HF_METACLASS[self.llm_backbone_id]]()
        )

        # Dispatch **kwargs to super() =>> note that `pad_token_id` collides, so we pass it in here as well...
        super().__init__(pad_token_id=pad_token_id, **kwargs)

# Here  we need trajectory_vla config, with
# prismatic_config fields and then the waypointer fields

class TrajectoryVLAConfig(PretrainedConfig):
    model_type: str = "trajectoryvla"
    is_composition: bool = True
    def __init__(
        self,
        prismatic_config = {},
        token_size: int = 1024,  # Timestep token size
        cheat: bool = False,  # If True, cheat and use action tokens; Works only with OpenVLA checkpoint
        num_timesteps: int = 20,  # Number of prediction time steps
        rotation_components: int = 9,  # Number of rotation componens: euler -> 3, quaternion -> 4, rotmat -> 9
        num_timestep_tokens : int = 3,
        seperate_control_proj: bool = True,  # If True, project control components separately
        timestep_proj_config: Dict[str, Any] = {},
        token_proj_config: Dict[str, Any] = {},
        transformer_config: Dict[str, Any] = {},
        # prismatic_config: PrismaticConfig,
        # waypointer_config: Dict[str, Any],
        # **kwargs: str,
    ):

        # super().__init__(**prismatic_config)
        self.prismatic_config = PrismaticConfig(**prismatic_config)

        self.token_size = token_size
        self.cheat = cheat
        self.num_timesteps = num_timesteps
        self.rotation_components = rotation_components
        self.seperate_control_proj = seperate_control_proj
        self.timestep_proj_config = timestep_proj_config
        self.token_proj_config = token_proj_config
        self.transformer_config = transformer_config
        # self.num_timestep_tokens = num_timestep_tokens

    @property
    def control_components(self) -> int:
        # Number of control dimensions: 3 translation, N rotation, 1 gripper
        return 3 + self.rotation_components + 1

    @property
    def num_timestep_tokens(self) -> int:
        return self.timestep_proj_config['num_tokens']
# class WaypointerConfig(ConfigurableModuleConfig):
#     token_size: int = 1024  # Timestep token size

#     cheat: bool  # If True, cheat and use action tokens; Works only with OpenVLA checkpoint

#     timestep_proj_config: AutoConfig  # Timestep tokens
#     token_proj_config: TokenProjectorConfig  # LLM output tokens projection and packing
#     transformer_config: AutoConfig  # Transformer config

#     # Output configurations
#     num_timesteps: int = 20  # Number of prediction time steps
#     rotation_components: int = 3  # Number of rotation componens: euler -> 3, quaternion -> 4, rotmat -> 9
#     separate_control_proj: bool = True  # If True, project control components separately

#     @property
#     def control_components(self) -> int:
#         # Number of control dimensions: 3 translation, N rotation, 1 gripper
#         return 3 + self.rotation_components + 1

#     @property
#     def num_timestep_tokens(self) -> int:
#         return self.timestep_proj_config.num_tokens


class OpenVLAConfig(PrismaticConfig):
    model_type: str = "openvla"

    def __init__(
        self,
        norm_stats: Optional[Dict[str, Dict[str, Dict[str, Dict[str, List[float]]]]]] = None,
        n_action_bins: int = 256,
        **kwargs: str,
    ) -> None:
        self.norm_stats, self.n_action_bins = norm_stats, n_action_bins

        super().__init__(**kwargs)

if  __name__ == "__main__" :
    # yaml_file = 'barrel/pipes/vlams/configs/waypoints/waypointer_multistep_fractal.yaml'

    prismatic_config = PrismaticConfig()
    print(prismatic_config)

    prismatic_config_dict = {
        "vision_backbone_id":"dinosiglip-vit-so-224px",
        # "llm_backbone_id":"llama2-7b-pure",meta-llama/Llama-2-7b-hf
        "llm_backbone_id": "meta-llama/Llama-2-7b-hf",

        "arch_specifier": "no-align+gelu-mlp", ## TODO: check
        "use_fused_vision_backbone" :None, ## TODO: check
        "image_resize_strategy" : "letterbox",
        "text_config" : None,
        "llm_max_length"  : 2048,
        "pad_token_id" :32000,
        "pad_to_multiple_of" : 64,
        "output_projector_states" : False,
    }
    token_proj_config = {
        "vit_tokens_layers": [2176, 1024],
        "control_tokens_layers": [4096, 2048, 1024],
        "image_tokens_mode": 'vit',
    }
    timestep_proj_config = {
        "pos_embed_scale": 1.0,
        "proj_layers": [1024],
        "time_delta_sec": 0.1,
        "num_tokens":3
    }

    TrajectoryVlaConfig = {
        "prismatic_config":prismatic_config_dict,
        "token_size": 1024,
        "cheat": False,
        "num_timesteps": 20,
        "rotation_components": 3,
        "seperate_control_proj": True,
        "timestep_proj_config": {},
        "token_proj_config": {},
        "transformer_config": {},
    }

    TrajectoryVLAConfig = TrajectoryVLAConfig( **TrajectoryVlaConfig)
    print(TrajectoryVLAConfig)

class WaypointTokenizer:
    """
    Wraps base LLM/VLM tokenizer and overloads least used token as a control token

    NOTE: By default, assumes a BPE-style tokenizer akin to the LlamaTokenizer,
        where *the least used tokens* appear at the end of the vocabulary!

    TODO: Adding new token vs overloading? When I call `tokenizer.add_token()` vocab stays the same
    """

    def __init__(self, tokenizer: transformers.PreTrainedTokenizerBase, num_tokens: int = 10) -> None:
        self.tokenizer = tokenizer
        self.num_tokens = num_tokens

    def __call__(self, *_) -> str:
        """Get the text token for control"""
        return self.tokenizer.decode(self.control_token_ids)

    @property
    def control_token_ids(self) -> np.ndarray:
        # Assumes we're overwriting the final tokens of the vocabulary (least used tokens)
        return np.arange(self.num_tokens) + int(self.tokenizer.vocab_size - self.num_tokens)

    @property
    def num_control_tokens(self) -> int:
        return self.num_tokens