File size: 12,455 Bytes
36e08c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
"""
configuration_prismatic.py
HuggingFace-style configuration definition for Prismatic VLMs, inheriting from `transformers.PretrainedConfig`.
Default configuration specifies `siglip-224px+7b`.
"""
from typing import Any, Dict, List, Optional
import transformers
from transformers import PretrainedConfig
from transformers.models.auto import CONFIG_MAPPING
import numpy as np
# === Utilities for Mapping Prismatic names to HF names ===
# fmt: off
VISION_BACKBONE_TO_RESOLUTION: Dict[str, List[int]] = {
"clip-vit-l": [224], "siglip-vit-so400m": [224], "dinov2-vit-l": [224], "in1k-vit-l": [224],
"clip-vit-l-336px": [336],
"siglip-vit-so400m-384px": [384],
"dinoclip-vit-l-336px": [336, 336],
"dinosiglip-vit-so-224px": [224, 224],
"dinosiglip-vit-so-384px": [384, 384],
}
VISION_BACKBONE_TO_TIMM_ID: Dict[str, List[str]] = {
"clip-vit-l": ["vit_large_patch14_clip_224.openai"],
"clip-vit-l-336px": ["vit_large_patch14_clip_336.openai"],
"dinov2-vit-l": ["vit_large_patch14_reg4_dinov2.lvd142m"],
"in1k-vit-l": ["vit_large_patch16_224.augreg_in21k_ft_in1k"],
"siglip-vit-so400m": ["vit_so400m_patch14_siglip_224"],
"siglip-vit-so400m-384px": ["vit_so400m_patch14_siglip_384"],
"dinoclip-vit-l-336px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_large_patch14_clip_336.openai"],
"dinosiglip-vit-so-224px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_so400m_patch14_siglip_224"],
"dinosiglip-vit-so-384px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_so400m_patch14_siglip_384"],
}
TIMM_OVERRIDE_ACT_LAYER: Dict[str, List[Optional[str]]] = {
"clip-vit-l": ["quick_gelu"], "clip-vit-l-336px": ["quick_gelu"],
"dinov2-vit-l": [None], "in1k-vit-l": [None],
"siglip-vit-so400m": [None], "siglip-vit-so400m-384px": [None],
"dinoclip-vit-l-336px": [None, "quick_gelu"],
"dinosiglip-vit-so-224px": [None, None], "dinosiglip-vit-so-384px": [None, None]
}
LLM_BACKBONE_TO_HF_PATH = {
"llama2-7b-pure": "meta-llama/Llama-2-7b-hf", "llama2-13b-pure": "meta-llama/Llama-2-13b-hf",
"llama2-7b-chat": "meta-llama/Llama-2-7b-chat-hf", "llama2-13b-chat": "meta-llama/Llama-2-13b-chat-hf",
"vicuna-v15-7b": "lmsys/vicuna-7b-v1.5", "vicuna-v15-13b": "lmsys/vicuna-13b-v1.5",
"mistral-v0.1-7b-pure": "mistralai/Mistral-7B-v0.1",
"mistral-v0.1-7b-instruct": "mistralai/Mistral-7B-Instruct-v0.1",
"phi-2-3b": "microsoft/phi-2",
}
LLM_BACKBONE_TO_HF_METACLASS = {
"llama2-7b-pure": "llama", "llama2-13b-pure": "llama", "llama2-7b-chat": "llama", "llama2-13b-chat": "llama",
"vicuna-v15-7b": "llama", "vicuna-v15-13b": "llama",
"mistral-v0.1-7b-pure": "mistral", "mistral-v0.1-7b-instruct": "mistral",
"phi-2-3b": "phi",
}
VALID_VISION_BACKBONES = set(VISION_BACKBONE_TO_RESOLUTION.keys())
VALID_LLM_BACKBONES = set(LLM_BACKBONE_TO_HF_PATH)
# fmt: on
class WaypointTokenizer:
"""
Wraps base LLM/VLM tokenizer and overloads least used token as a control token
NOTE: By default, assumes a BPE-style tokenizer akin to the LlamaTokenizer,
where *the least used tokens* appear at the end of the vocabulary!
TODO: Adding new token vs overloading? When I call `tokenizer.add_token()` vocab stays the same
"""
model_type = "waypointer"
is_composition: bool = True
def __init__(self, tokenizer: transformers.PreTrainedTokenizerBase, num_tokens: int = 10) -> None:
self.tokenizer = tokenizer
self.num_tokens = num_tokens
def __call__(self, *_) -> str:
"""Get the text token for control"""
return self.tokenizer.decode(self.control_token_ids)
@property
def control_token_ids(self) -> np.ndarray:
# Assumes we're overwriting the final tokens of the vocabulary (least used tokens)
return np.arange(self.num_tokens) + int(self.tokenizer.vocab_size - self.num_tokens)
@property
def num_control_tokens(self) -> int:
return self.num_tokens
class PrismaticConfig(PretrainedConfig):
model_type: str = "prismatic"
is_composition: bool = False
def __init__(
self,
vision_backbone_id: str = "dinosiglip-vit-so-224px",
llm_backbone_id: str = "llama2-7b-pure",
arch_specifier: str = "no-align+gelu-mlp", ## TODO: check
use_fused_vision_backbone: Optional[bool] = None, ## TODO: check
image_resize_strategy: str = "letterbox",
text_config: Optional[Dict[str, Any]] = None,
llm_max_length: int = 2048,
pad_token_id: int = 32000,
pad_to_multiple_of: int = 64,
output_projector_states: bool = False,
**kwargs: str,
) -> None:
if vision_backbone_id not in VALID_VISION_BACKBONES:
raise ValueError(f"Vision backbone `{vision_backbone_id}` not in {VALID_VISION_BACKBONES = }")
if llm_backbone_id not in VALID_LLM_BACKBONES:
raise ValueError(f"LLM backbone `{llm_backbone_id}` not in {VALID_LLM_BACKBONES = }")
# Set Prismatic Configuration Fields
self.vision_backbone_id = vision_backbone_id
self.llm_backbone_id = llm_backbone_id
self.arch_specifier = arch_specifier
self.output_projector_states = output_projector_states
# [Contract] All vision backbone parameters are lists =>> supports fused backbones with different preprocessing
self.use_fused_vision_backbone = (
use_fused_vision_backbone
if use_fused_vision_backbone is not None
else any(self.vision_backbone_id.startswith(v) for v in ["dinoclip", "dinosiglip"])
)
self.timm_model_ids = VISION_BACKBONE_TO_TIMM_ID[self.vision_backbone_id]
self.timm_override_act_layers = TIMM_OVERRIDE_ACT_LAYER[self.vision_backbone_id]
self.image_sizes = VISION_BACKBONE_TO_RESOLUTION[self.vision_backbone_id]
self.image_resize_strategy = image_resize_strategy
self.hf_llm_id = LLM_BACKBONE_TO_HF_PATH[self.llm_backbone_id]
self.llm_max_length = llm_max_length
self.pad_token_id, self.pad_to_multiple_of = pad_token_id, pad_to_multiple_of
# [IMPORTANT] HF Utilities actually look for a `text_config` field... we need to use that specific naming!
self.text_config = (
CONFIG_MAPPING[LLM_BACKBONE_TO_HF_METACLASS[self.llm_backbone_id]](**text_config)
if text_config is not None
else CONFIG_MAPPING[LLM_BACKBONE_TO_HF_METACLASS[self.llm_backbone_id]]()
)
# Dispatch **kwargs to super() =>> note that `pad_token_id` collides, so we pass it in here as well...
super().__init__(pad_token_id=pad_token_id, **kwargs)
# Here we need trajectory_vla config, with
# prismatic_config fields and then the waypointer fields
class TrajectoryVLAConfig(PretrainedConfig):
model_type: str = "trajectoryvla"
is_composition: bool = True
def __init__(
self,
prismatic_config = {},
token_size: int = 1024, # Timestep token size
cheat: bool = False, # If True, cheat and use action tokens; Works only with OpenVLA checkpoint
num_timesteps: int = 20, # Number of prediction time steps
rotation_components: int = 9, # Number of rotation componens: euler -> 3, quaternion -> 4, rotmat -> 9
num_timestep_tokens : int = 3,
seperate_control_proj: bool = True, # If True, project control components separately
timestep_proj_config: Dict[str, Any] = {},
token_proj_config: Dict[str, Any] = {},
transformer_config: Dict[str, Any] = {},
# prismatic_config: PrismaticConfig,
# waypointer_config: Dict[str, Any],
# **kwargs: str,
):
# super().__init__(**prismatic_config)
self.prismatic_config = PrismaticConfig(**prismatic_config)
self.token_size = token_size
self.cheat = cheat
self.num_timesteps = num_timesteps
self.rotation_components = rotation_components
self.seperate_control_proj = seperate_control_proj
self.timestep_proj_config = timestep_proj_config
self.token_proj_config = token_proj_config
self.transformer_config = transformer_config
# self.num_timestep_tokens = num_timestep_tokens
@property
def control_components(self) -> int:
# Number of control dimensions: 3 translation, N rotation, 1 gripper
return 3 + self.rotation_components + 1
@property
def num_timestep_tokens(self) -> int:
return self.timestep_proj_config['num_tokens']
# class WaypointerConfig(ConfigurableModuleConfig):
# token_size: int = 1024 # Timestep token size
# cheat: bool # If True, cheat and use action tokens; Works only with OpenVLA checkpoint
# timestep_proj_config: AutoConfig # Timestep tokens
# token_proj_config: TokenProjectorConfig # LLM output tokens projection and packing
# transformer_config: AutoConfig # Transformer config
# # Output configurations
# num_timesteps: int = 20 # Number of prediction time steps
# rotation_components: int = 3 # Number of rotation componens: euler -> 3, quaternion -> 4, rotmat -> 9
# separate_control_proj: bool = True # If True, project control components separately
# @property
# def control_components(self) -> int:
# # Number of control dimensions: 3 translation, N rotation, 1 gripper
# return 3 + self.rotation_components + 1
# @property
# def num_timestep_tokens(self) -> int:
# return self.timestep_proj_config.num_tokens
class OpenVLAConfig(PrismaticConfig):
model_type: str = "openvla"
def __init__(
self,
norm_stats: Optional[Dict[str, Dict[str, Dict[str, Dict[str, List[float]]]]]] = None,
n_action_bins: int = 256,
**kwargs: str,
) -> None:
self.norm_stats, self.n_action_bins = norm_stats, n_action_bins
super().__init__(**kwargs)
if __name__ == "__main__" :
# yaml_file = 'barrel/pipes/vlams/configs/waypoints/waypointer_multistep_fractal.yaml'
prismatic_config = PrismaticConfig()
print(prismatic_config)
prismatic_config_dict = {
"vision_backbone_id":"dinosiglip-vit-so-224px",
# "llm_backbone_id":"llama2-7b-pure",meta-llama/Llama-2-7b-hf
"llm_backbone_id": "meta-llama/Llama-2-7b-hf",
"arch_specifier": "no-align+gelu-mlp", ## TODO: check
"use_fused_vision_backbone" :None, ## TODO: check
"image_resize_strategy" : "letterbox",
"text_config" : None,
"llm_max_length" : 2048,
"pad_token_id" :32000,
"pad_to_multiple_of" : 64,
"output_projector_states" : False,
}
token_proj_config = {
"vit_tokens_layers": [2176, 1024],
"control_tokens_layers": [4096, 2048, 1024],
"image_tokens_mode": 'vit',
}
timestep_proj_config = {
"pos_embed_scale": 1.0,
"proj_layers": [1024],
"time_delta_sec": 0.1,
"num_tokens":3
}
TrajectoryVlaConfig = {
"prismatic_config":prismatic_config_dict,
"token_size": 1024,
"cheat": False,
"num_timesteps": 20,
"rotation_components": 3,
"seperate_control_proj": True,
"timestep_proj_config": {},
"token_proj_config": {},
"transformer_config": {},
}
TrajectoryVLAConfig = TrajectoryVLAConfig( **TrajectoryVlaConfig)
print(TrajectoryVLAConfig)
class WaypointTokenizer:
"""
Wraps base LLM/VLM tokenizer and overloads least used token as a control token
NOTE: By default, assumes a BPE-style tokenizer akin to the LlamaTokenizer,
where *the least used tokens* appear at the end of the vocabulary!
TODO: Adding new token vs overloading? When I call `tokenizer.add_token()` vocab stays the same
"""
def __init__(self, tokenizer: transformers.PreTrainedTokenizerBase, num_tokens: int = 10) -> None:
self.tokenizer = tokenizer
self.num_tokens = num_tokens
def __call__(self, *_) -> str:
"""Get the text token for control"""
return self.tokenizer.decode(self.control_token_ids)
@property
def control_token_ids(self) -> np.ndarray:
# Assumes we're overwriting the final tokens of the vocabulary (least used tokens)
return np.arange(self.num_tokens) + int(self.tokenizer.vocab_size - self.num_tokens)
@property
def num_control_tokens(self) -> int:
return self.num_tokens |