File size: 50,146 Bytes
bbe26d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 |
"""
modeling_prismatic.py
Core HuggingFace-style PrismaticPreTrainedModel and PrismaticForConditionalGeneration class definitions, inheriting
from the default `transformers.PretrainedModel`. Meant to be standalone and self-contained, but exactly replicate the
logic in `prismatic.models.vlms.prismatic.py`.
Note =>> for the time being, not adding the custom HF "docstring" formatting.
References [LLaVa, IDEFICS-2]:
=> https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava/modeling_llava.py
=> https://github.com/huggingface/transformers/blob/main/src/transformers/models/idefics2/modeling_idefics2.py
"""
import logging
from dataclasses import dataclass
from functools import partial
from typing import Any, Callable, ClassVar, Dict, List, Optional, Tuple, Union
from functools import cached_property
# from barrel.components.nn.layers.nerf_pos_embed import NeRFPositionalEmbedding
import numpy as np
import timm
import tokenizers
import torch
import torch.nn as nn
import transformers
from timm.models.vision_transformer import LayerScale
from transformers import AutoModelForCausalLM, PretrainedConfig, PreTrainedModel
from transformers.modeling_outputs import ModelOutput
import collections
import math
from barrel.pipes.vlams.extern.prismatic_config import OpenVLAConfig, PrismaticConfig , TrajectoryVLAConfig, WaypointTokenizer
# from barrel.pipes.vlams.models.control.token_proj import TokenProjector
from barrel.pipes.vlams.extern.datatypes import *
from barrel.pipes.vlams.extern.detr import *
from IPython import embed
import os
from PIL import Image
from pathlib import Path
from torch.amp.autocast_mode import autocast # Corrected import for latest PyTorch
from scipy.spatial.transform import Rotation as R
ht_token_path = Path(".hf_token")
HF_TOKEN = ht_token_path.read_text().strip() if isinstance(ht_token_path, Path) else hf_token_path
# Get Logger
logger = logging.getLogger(__name__)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
# === PyTorch/HuggingFace Default IGNORE_INDEX (for CrossEntropyLoss labels)
IGNORE_INDEX = -100
# === Utility Functions for Monkey-Patching ===
def unpack_tuple(fn: Callable[[Any], Tuple[Any]]) -> Callable[[Any], Any]:
def wrapper(*args: Any, **kwargs: Any) -> Any:
result = fn(*args, **kwargs)
return result[0] if isinstance(result, tuple) else result
return wrapper
# HF Transformers overwrites parameters with names containing `gamma`; we're going to patch VisionBackbone.LayerScale.
# =>> TIMM :: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L109
# =>> Transformers :: https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_utils.py#L3960
def _ls_new_forward(self, x: torch.Tensor) -> torch.Tensor:
return x.mul_(self.scale_factor) if self.inplace else x * self.scale_factor
def ls_apply_patch(ls_module: LayerScale):
ls_module.scale_factor = nn.Parameter(ls_module.gamma.clone())
ls_module.forward = _ls_new_forward.__get__(ls_module, LayerScale)
del ls_module.gamma
# === Prismatic Vision Backbone (nn.Module) Definitions (w/ Fused Backbone Support) ===
class PrismaticVisionBackbone(nn.Module):
def __init__(
self,
use_fused_vision_backbone: bool,
image_sizes: List[int],
timm_model_ids: List[str],
timm_override_act_layers: List[Optional[str]],
) -> None:
super().__init__()
self.use_fused_vision_backbone = use_fused_vision_backbone
# [Contract] Validate number of (fused) vision backbones, create "alpha" featurizer and Instantiate
# =>> Note :: Monkey-Patch the `forward()` function of the backbone to ensure FSDP-compatibility
# Hardcodes `get_intermediate_layers` to return the **SECOND-TO-LAST** layer patches!
assert len(timm_model_ids) <= 2, "Prismatic models only support up to 2 (fused) vision backbones!"
self.dino_featurizer = timm.create_model(
timm_model_ids[0],
pretrained=True,
num_classes=0,
img_size=image_sizes[0],
act_layer=timm_override_act_layers[0],
)
self.dino_featurizer.eval()
self.embed_dim = self.dino_featurizer.embed_dim
# If `use_fused_vision_backbone` =>> create "beta" featurizer
# if self.use_fused_vision_backbone:
self.siglip_featurizer = timm.create_model(
timm_model_ids[1],
pretrained=True,
num_classes=0,
img_size=image_sizes[1],
act_layer=timm_override_act_layers[1],)
self.siglip_featurizer.eval()
self.dino_featurizer.forward = partial(
self.dino_featurizer.forward_intermediates,
indices=[len(self.dino_featurizer.blocks) - 2],
return_prefix_tokens=False,
norm=False,
stop_early=True,
output_fmt='NLC',
intermediates_only=True,
)
self.siglip_featurizer.forward = partial(
self.siglip_featurizer.forward_intermediates,
indices=[len(self.siglip_featurizer.blocks) - 2],
return_prefix_tokens=False,
norm=False,
stop_early=True,
output_fmt='NLC',
intermediates_only=True,
)
self.embed_dim += self.siglip_featurizer.embed_dim
def forward(self, pixel_values) -> torch.Tensor:
"""Run image (`pixel_values`) through featurizer; if channel-stacked, then dispatch and sequence stack."""
if not self.use_fused_vision_backbone:
return self.featurizer(pixel_values)
# Split `pixel_values :: [bsz, 2 * 3, resolution, resolution]` =>> featurize =>> channel stack
# img, img_fused = torch.split(pixel_values, [3, 3], dim=1)
img = pixel_values['dino']
img_fused = pixel_values['siglip']
patches, patches_fused = self.dino_featurizer(img)[0], self.siglip_featurizer(img_fused)[0]
return torch.cat([patches, patches_fused], dim=2)
class PrismaticProjector(nn.Module):
def __init__(self, use_fused_vision_backbone, vision_dim: int, llm_dim: int) -> None:
super().__init__()
self.initial_projection_dim = vision_dim * 4
self.projector = torch.nn.Sequential(
torch.nn.Linear(vision_dim, self.initial_projection_dim, bias=True),
torch.nn.GELU(),
torch.nn.Linear(self.initial_projection_dim, llm_dim, bias=True),
torch.nn.GELU(),
torch.nn.Linear(llm_dim, llm_dim, bias=True),
)
def forward(self, fused_img_patches: torch.Tensor) -> torch.Tensor:
return self.projector(fused_img_patches)
# === Main HF Class Definitions ===
@dataclass
class PrismaticCausalLMOutputWithPast(ModelOutput):
"""Base class for Prismatic casual (visually-conditioned) language model outputs; also exposes visual features."""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
# Additions for VLMs
projector_features: Optional[torch.FloatTensor] = None
class PrismaticPreTrainedModel(PreTrainedModel):
config_class: PrismaticConfig
base_model_prefix: str = "model"
supports_gradient_checkpointing: bool = True
_no_split_modules: ClassVar[List[str]] = ["PrismaticProjector"]
_skip_keys_device_placement: str = "past_key_values"
_supports_flash_attn_2: bool = True
def _init_weights(self, module: nn.Module) -> None:
# Important :: this HF ported version is *not* meant for training from scratch; only inference and fine-tuning!
# => As such, this init_weights code is not correct; if training VLMs from scratch, use the main codebase at
# https://github.com/TRI-ML/prismatic-vlms
std = (
self.config.initializer_range
if hasattr(self.config, "initializer_range")
else self.config.text_config.initializer_range
)
if hasattr(module, "class_embedding"):
module.class_embedding.data.normal_(mean=0.0, std=std)
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@property
def _supports_sdpa(self) -> bool:
"""Check LLM supports SDPA Attention"""
return self.language_model._supports_sdpa
class LLMBackbone(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.llm : AutoModelForCausalLM
self.tokenizer = self._create_tokenizer()
def _create_tokenizer(self) -> transformers.PreTrainedTokenizerBase:
# Load (Fast) Tokenizer
print(f"Loading (Fast) Tokenizer via the AutoTokenizer API")
tokenizer = transformers.AutoTokenizer.from_pretrained(
self.config['hf_model_id'],
model_max_length=self.config['llm_max_length'],
token=HF_TOKEN,
padding_side="right",
)
# Validation =>> Our VLM logic currently operates under the assumption that the tokenization of a new input
# starts with a <BOS> token unless `add_special_tokens = False`; for these models, we empirically
# find that adding image patches *after* the BOS leads to much better performance.
#
# As a result we explicitly validate that a tokenizer conforms to the expected behavior; if you're reading this
# line, it's probably because you're adding a new LLM with a different tokenizer behavior. If so, feel free to
# override the `SPECIAL_CASES` set below, but make sure to make the appropriate changes in the `datasets.py`
# and VLM `forward()` logic!
SPECIAL_CASES = {
# Phi-2 Tokenizer doesn't add any BOS tokens by default, and sets BOS == EOS == "<|endoftext|>"
# =>> We'll prepend BOS to first input (to play nicely with image token insertion logic; verified that
# this works well with base LLM generation.
# =>> Like Llama-2 Tokenizers -- we'll add a special PAD token for training purposes.
"microsoft/phi-2",
}
if self.config['hf_model_id'] not in SPECIAL_CASES:
# Note =>> this assert should hold for all Llama-derived tokenizers (`LlamaTokenizerFast` ==> includes Mistral!
assert (
tokenizer("Test 123", add_special_tokens=True).input_ids[0] == tokenizer.bos_token_id
) and (
tokenizer("Test 123", add_special_tokens=False).input_ids[0] != tokenizer.bos_token_id
), f"Default Tokenizer of type `{type(tokenizer)}` does not automatically prefix inputs with BOS token!\n"
return tokenizer
class PrismaticForConditionalGeneration(PrismaticPreTrainedModel):
def __init__(self, config: PrismaticConfig) -> None:
super().__init__(config)
# [Validation] Lightweight Validate on `config` Fields + Dependency Versions
if config.use_fused_vision_backbone is None:
raise ValueError("Missing config field `use_fused_vision_backbone`")
# if timm.__version__ not in {"0.9.10", "0.9.11", "0.9.12", "0.9.16"}:
# raise NotImplementedError(
# "TIMM Version must be >= 0.9.10 and < 1.0.0 (breaking); please raise a GitHub Issue "
# "if you urgently need support for latest TIMM versions."
# )
# if (transformers.__version__ != "4.40.1") or (tokenizers.__version__ != "0.19.1"):
# logger.warning(
# f"Expected `transformers==4.40.1` and `tokenizers==0.19.1` but got "
# f"`transformers=={transformers.__version__}` and `tokenizers=={tokenizers.__version__}`; "
# f"there might be inference-time regressions due to dependency changes. If in doubt, please"
# f"use the above versions."
# )
# Instantiate PrismaticVisionBackbone (w/ Potential Fused Backbone)
self.vision_backbone = PrismaticVisionBackbone(
config.use_fused_vision_backbone, config.image_sizes, config.timm_model_ids, config.timm_override_act_layers
)
# Create Multimodal Projector
self.projector = PrismaticProjector(
config.use_fused_vision_backbone,
vision_dim=self.vision_backbone.embed_dim,
llm_dim=config.text_config.hidden_size,
)
# Instantiate LLM Backbone
self.llm_backbone = LLMBackbone({'hf_model_id': config.hf_llm_id, 'llm_max_length': config.llm_max_length, "pad_token_id" :32000,
"pad_to_multiple_of" : 64,})
# self.llm_backbone.llm = AutoModelForCausalLM.from_config(
# config.text_config, attn_implementation="flash_attention_2"
# )
self.llm_backbone.llm = AutoModelForCausalLM.from_pretrained(
'meta-llama/Llama-2-7b-hf',
token=HF_TOKEN,
attn_implementation='flash_attention_2',
# The following parameters are set to prevent `UserWarnings` from HF; we want greedy decoding!
do_sample=False,
temperature=1.0,
use_cache=False,
top_p=1.0, )
self.llm_backbone.tokenizer.add_special_tokens({"pad_token": "<PAD>"})
self.llm_backbone.llm.config.pad_token_id = self.llm_backbone.tokenizer.pad_token_id
self.llm_backbone.llm.resize_token_embeddings(len(self.llm_backbone.tokenizer), pad_to_multiple_of=64)
# self.llm_backbone.llm.config.pad_token_id = self.llm_backbone.tokenizer.pad_token_id
# self.llm_backbone.llm.resize_token_embeddings(len(self.llm_backbone.tokenizer), pad_to_multiple_of=64)
# self.resize_token_embeddings(32001,64)
self.vocab_size = config.text_config.vocab_size
self.pad_token_id = config.pad_token_id
# HF Boilerplate =>> initializes weights via `_init_weights()` and sets gradient checkpointing
self.post_init()
# === `PreTrainedModel` Boilerplate ===
def get_input_embeddings(self) -> nn.Module:
return self.llm_backbone.llm.get_input_embeddings()
def set_input_embeddings(self, value: nn.Module) -> None:
self.llm_backbone.llm.set_input_embeddings(value)
def get_output_embeddings(self) -> nn.Module:
return self.llm_backbone.llm.get_output_embeddings()
def set_output_embeddings(self, new_embeddings: nn.Module) -> None:
self.llm_backbone.llm.set_output_embeddings(new_embeddings)
def get_decoder(self) -> nn.Module:
return self.llm_backbone.llm.get_decoder()
def set_decoder(self, decoder: nn.Module) -> None:
self.llm_backbone.llm.set_decoder(decoder)
def tie_weights(self) -> None:
self.llm_backbone.llm.tie_weights() # Note: `Llama-2` and `Mistral` don't tie weights (no-op)
# def resize_token_embeddings(
# self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
# ) -> nn.Embedding:
# updated_embeddings = self.llm_backbone.llm.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
# # Update config/instance variables
# self.config.text_config.vocab_size = updated_embeddings.num_embeddings
# self.vocab_size = updated_embeddings.num_embeddings
# return updated_embeddings
# === Core Prismatic VLM `forward()` Logic ===
def forward(
self,
input_ids: Optional[torch.LongTensor] ,
attention_mask: Optional[torch.Tensor],
# pixel_values: Optional[torch.FloatTensor] = None,
pixel_values: Dict[str, torch.Tensor] = {},
labels: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_projector_features: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs: Any,
) -> Union[Tuple, PrismaticCausalLMOutputWithPast]:
"""Run a forward pass through the VLM, returning a PrismaticCausalLMOutputWithPast instance."""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
output_projector_features = output_projector_features if output_projector_features is not None else False
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Respect `use_cache` only if not training (even if `gradient_checkpointing` is off)
use_cache = use_cache and not self.training
# Instantiate Placeholder for Projector Features
projected_patch_embeddings = None
# Note :: We only support forward passes with the following cases:
# => Cached Generation :: (input_ids.shape[1] == 1) and (past_key_values is not None)
# => Unimodal Forward :: (pixel_values is None)
# => Multimodal Forward :: (pixel_values is not None) and (input_ids/embeds.shape[0] == pixel_values.shape[0])
# === Handle Generation with Cache (`input_ids.shape[1] == 1`) =>> requires `past_keys_values` ===
if input_ids.shape[1] == 1:
assert input_ids.shape[0] == 1, "Generation is only currently supported for batch size of 1!"
assert past_key_values is not None, "You must provide `past_key_values` during cached generation!"
assert labels is None, "Unexpected key `labels` provided during cached generation!"
language_model_output = self.llm_backbone.llm(
input_ids=input_ids,
attention_mask=None,
position_ids=None,
past_key_values=past_key_values,
inputs_embeds=None,
labels=None,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# === Handle Unimodal Forward ===
elif pixel_values is None:
assert (input_ids is not None) and (inputs_embeds is None), "Missing `input_ids` in language-only forward!"
assert past_key_values is None, "Unexpected key `past_key_values` provided during language-only forward!"
language_model_output = self.llm_backbone.llm(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=None,
past_key_values=None,
inputs_embeds=None,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# === Handle Multimodal Forward ===
elif (input_ids.shape[0] == pixel_values['dino'].shape[0]) or (inputs_embeds.shape[0] == pixel_values['dino'].shape[0]):
assert past_key_values is None, "Unexpected key `past_key_values` provided during language-only forward!"
# Visual Feature Extraction
patch_features = self.vision_backbone(pixel_values)
projected_patch_embeddings = self.projector(patch_features) ## matches
projected_patch_attention_mask = None
if attention_mask is not None:
projected_patch_attention_mask = torch.full(
(projected_patch_embeddings.shape[0], projected_patch_embeddings.shape[1]),
fill_value=True,
dtype=attention_mask.dtype,
device=attention_mask.device,
)
# Get Input Embeddings (from Language Model Embeddings)
input_embeddings = self.get_input_embeddings()(input_ids)
# Build Multimodal Embeddings & Attention Mask =>> Prismatic defaults to inserting after <BOS> token (1:)
multimodal_embeddings = torch.cat(
[input_embeddings[:, :1, :], projected_patch_embeddings, input_embeddings[:, 1:, :]], dim=1
)
multimodal_attention_mask = None
if attention_mask is not None:
multimodal_attention_mask = torch.cat(
[attention_mask[:, :1], projected_patch_attention_mask, attention_mask[:, 1:]], dim=1
)
# Build Labels (if specified) =>> Ignore Labels for Patch Embeddings
multimodal_labels = None
if labels is not None:
projected_patch_labels = torch.full(
(projected_patch_embeddings.shape[0], projected_patch_embeddings.shape[1]),
fill_value=IGNORE_INDEX,
dtype=labels.dtype,
device=labels.device,
)
multimodal_labels = torch.cat([labels[:, :1], projected_patch_labels, labels[:, 1:]], dim=1)
# Dispatch to Language Model
language_model_output = self.llm_backbone.llm(
input_ids=None,
attention_mask=multimodal_attention_mask,
position_ids=None,
past_key_values=None,
inputs_embeds=multimodal_embeddings,
labels=multimodal_labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# === Otherwise =>> Assume Invalid! ===
elif (input_ids.shape[0] != pixel_values.shape[0]) or (inputs_embeds.shape[0] != pixel_values.shape[0]):
raise ValueError("Non-homogenous batch of (text, image) input -- forward() does not support mixed batches!")
else:
raise ValueError(
"Invalid PrismaticForConditionalGeneration `forward()` call with provided arguments:\n"
f"=> `input_ids` = {input_ids is not None}\n"
f"=> `attention_mask` = {attention_mask is not None}\n"
f"=> `pixel_values` = {pixel_values is not None}\n"
f"=> `labels` = {labels is not None}\n"
f"=> `input_embeds` = {inputs_embeds is not None}\n"
f"=> `past_key_values` = {past_key_values is not None}\n"
f"=> `use_cache` = {use_cache}"
)
# Unpack `language_model_output` and return PrismaticCausalLMOutputWithPast (or tuple if not `return_dict`)
if not return_dict:
if output_projector_features and (projected_patch_embeddings is not None):
return *language_model_output, projected_patch_embeddings
return language_model_output
return (PrismaticCausalLMOutputWithPast(
loss=language_model_output.loss,
logits=language_model_output.logits,
past_key_values=language_model_output.past_key_values,
hidden_states=language_model_output.hidden_states,
attentions=language_model_output.attentions,
projector_features=projected_patch_embeddings,
),patch_features,multimodal_attention_mask)
# === GenerationMixin Methods ===
def prepare_inputs_for_generation(
self,
input_ids: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
**kwargs: str,
) -> Dict[str, torch.Tensor]:
"""Borrowed from `LlamaForCausalLM` and simplified for batch size = 1; mirrors original PrismaticVLM logic."""
if ((input_ids is not None) and (input_ids.shape[0] > 1)) or (
(inputs_embeds is not None) and (inputs_embeds.shape[0] > 1)
):
raise ValueError("Generation with batch size > 1 is not currently supported!")
# Handle `past_key_values` (cache) =>> assume `input_ids` just has unprocessed tokens
if past_key_values is not None:
input_ids = input_ids[:, -1:]
# If `input_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"input_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
# Make sure `pixel_values` are preserved in `model_inputs`
model_inputs.update(
{
"attention_mask": attention_mask,
"pixel_values": pixel_values,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
}
)
return model_inputs
# Defer to Language Model (all handle this differently, with different return types)
def _reorder_cache(self, *args, **kwargs) -> Any:
return self.language_model._reorder_cache(*args, **kwargs)
class TokenProjectorConfig(PretrainedConfig):
vit_tokens_layers: List[int] = [] # If empty, torch.nn.Identity
llm_image_tokens_layers: List[int] = [] # If empty, torch.nn.Identity
control_tokens_layers: List[int] = [] # If empty, torch.nn.Identity
# image_tokens_mode:
# vit: use ViT tokens only
# llm: use LLM tokens only
# skip: skip connection between projector(ViT) and LLM with addition
# none: don't feed to TokenProjector
image_tokens_mode: str
def __post_init__(self):
super().__post_init__()
if self.image_tokens_mode == 'vit':
assert len(self.vit_tokens_layers) > 0 or len(self.control_tokens_layers) > 0
elif self.image_tokens_mode == 'llm':
assert len(self.vit_tokens_layers) > 0 or len(self.control_tokens_layers) > 0
elif self.image_tokens_mode == 'skip':
assert len(self.vit_tokens_layers) > 0 or len(self.llm_image_tokens_layers) > 0
elif self.image_tokens_mode == 'none':
assert len(self.vit_tokens_layers) == 0
assert len(self.llm_image_tokens_layers) == 0
else:
raise NotImplementedError(f"Unknown image tokens mode {self.image_tokens_mode}")
class TokenProjector(nn.Module):
"""Project and pack VLM output tokens"""
def __init__(self, config):
super().__init__()
self.config = TokenProjectorConfig()
self.config.vit_tokens_layers = config['vit_tokens_layers']
self.config.llm_image_tokens_layers = config['llm_image_tokens_layers']
self.config.control_tokens_layers = config['control_tokens_layers']
self.config.image_tokens_mode = config['image_tokens_mode']
self.vit_tokens_proj = self._make_token_proj_module(self.config.vit_tokens_layers)
self.llm_image_tokens_proj = self._make_token_proj_module(self.config.llm_image_tokens_layers)
self.control_tokens_proj = self._make_token_proj_module(self.config.control_tokens_layers)
def forward(self, inputs: WaypointerInput) -> torch.Tensor:
"""
Args:
inputs: Contains VLM outputs
Returns:
torch.Tensor of shape [B, num_tokens, token_size] that always contains the control tokens
and possibly the image tokens (prepended), depending on the configuration
"""
vit_tokens = self.vit_tokens_proj(inputs.vit_tokens)
control_tokens = self.control_tokens_proj(inputs.control_tokens)
llm_image_tokens = self.llm_image_tokens_proj(inputs.llm_image_tokens)
if self.config.image_tokens_mode == 'vit':
output = torch.cat([vit_tokens, control_tokens], dim=1) # [B, img + control, token_size]
elif self.config.image_tokens_mode == 'llm':
output = torch.cat([llm_image_tokens, control_tokens], dim=1) # [B, img + control, token_size]
elif self.config.image_tokens_mode == 'skip':
image_tokens = llm_image_tokens + vit_tokens
output = torch.cat([image_tokens, control_tokens], dim=1) # [B, img + control, token_size]
elif self.config.image_tokens_mode == 'none':
output = control_tokens
else:
raise NotImplementedError(f"Unknown image tokens mode {self.config.image_tokens_mode}")
return output
def _make_token_proj_module(self, layer_sizes: List[int]) -> torch.nn.Module:
if len(layer_sizes) == 0:
return torch.nn.Identity()
assert len(layer_sizes) > 1, "Need to provide input and output layer sizes at least"
module = torch.nn.Sequential(
*[
torch.nn.Sequential(
collections.OrderedDict(
{
'linear': torch.nn.Linear(layer_in_features, layer_out_features),
'act': torch.nn.ReLU(),
'norm': torch.nn.LayerNorm(layer_out_features),
}
)
)
for layer_in_features, layer_out_features in zip(layer_sizes[:-1], layer_sizes[1:])
]
)
return module
class NeRFPositionalEmbedding(torch.nn.Module):
def __init__(self, proj_scale: int):
"""
Args:
proj_scale: Dimension size, same as L parameter in the NeRF paper
"""
super().__init__()
self.proj_scale = proj_scale
freq = 2 ** torch.arange(self.proj_scale, dtype=torch.float32) * math.pi # size: [L]
self.register_buffer('freq', freq)
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
"""
Maps values from R^N to a higher dimensional space R^(N2L)
Args:
inputs: torch.Tensor of shape [B, ..., N]; input values to be transformed
Returns: torch.Tensor of shape [B, ..., N2L]; encoded input values
"""
spectrum = self.freq.view(*[1] * inputs.ndim, -1) * inputs.unsqueeze(-1) # [B, ..., N, L]
encoding = torch.stack([torch.sin(spectrum), torch.cos(spectrum)], dim=-2) # [B, ..., N, 2, L]
encoding = encoding.view(inputs.shape[-1], -1) # [B, ..., N2L]
return encoding
class TimestepProjModuleConfig(PretrainedConfig):
pos_embed_scale: int # How much to scale timestep values when doing position embedding
proj_layers: List[int]
time_delta_sec: float = 0.25 # Time delta between two predictions
num_tokens: int = 3 # Number of tokens per timestep; Currently 3 - translation, rotation, gripper
class TimestepProjModule(nn.Module):
def __init__(self, config: TimestepProjModuleConfig, num_timesteps: int, token_size: int):
"""
Args:
num_timesteps: Number of control timesteps
token_size: Single token size
"""
super().__init__()
self.config = TimestepProjModuleConfig()
self.config.pos_embed_scale = config['pos_embed_scale']
self.config.proj_layers = config['proj_layers']
self.config.time_delta_sec = config['time_delta_sec']
self.config.num_tokens = config['num_tokens']
self.num_timesteps = num_timesteps
self.token_size = token_size
input_size = 2 * self.config.pos_embed_scale
self.pos_embed = NeRFPositionalEmbedding(self.config.pos_embed_scale)
# We output one token for translation, one for rotation and one for gripper state
feature_size = self.config.num_tokens * self.token_size
# Make MLP projection
self.timestep_proj = self._make_timestep_proj(in_features=int(input_size), out_features=int(feature_size))
def _make_timestep_proj(self, in_features: int, out_features: int) -> torch.nn.Module:
layer_sizes = [in_features] + list(self.config.proj_layers) + [out_features]
module = torch.nn.Sequential(
*[
torch.nn.Sequential(
collections.OrderedDict(
{
'linear': torch.nn.Linear(layer_in_features, layer_out_features),
'act': torch.nn.ReLU(),
'norm': torch.nn.LayerNorm(layer_out_features),
}
)
)
for layer_in_features, layer_out_features in zip(layer_sizes[:-1], layer_sizes[1:])
]
)
return module
def forward(self) -> torch.Tensor:
"""
Returns:
torch.Tensor of sequence of timestep tokens, shape [1, num_timesteps * num_tokens, token_size]
"""
device = self.timestep_proj[0].linear.weight.device # type: ignore[index]
# Position encode timesteps
time_deltas_norm = self.time_deltas_norm.view(1, self.num_timesteps) # [1, num_timesteps]
time_deltas_norm = time_deltas_norm.to(device=device)
# Embed timesteps to intermediate dimension
timesteps_embed = self.pos_embed(time_deltas_norm) # [1, num_timesteps * 2 * L]
timesteps_embed = timesteps_embed.view(self.num_timesteps, -1) # [num_timesteps, 2 * L]
# Project the timesteps via MLP to tokens
timesteps_tokens = self.timestep_proj(timesteps_embed) # [num_timesteps, token_size * 3]
# Reshape MLP outputs into tokens
timesteps_tokens = timesteps_tokens.view( # [1, num_timesteps * 3, token_size]
1, self.num_timesteps * self.config.num_tokens, self.token_size
)
return timesteps_tokens
@cached_property
def time_deltas_sec(self) -> torch.Tensor:
return torch.arange(0, self.num_timesteps, 1, dtype=torch.float32) * self.config.time_delta_sec
@cached_property
def time_deltas_norm(self) -> torch.Tensor:
# Normalize time deltas between [0, 1]. We are saving [-1, 0] interval for possible past supervision
if self.time_deltas_sec.shape[0] == 1:
# Can't divide by 0
time_deltas_norm = self.time_deltas_sec
else:
time_deltas_norm = self.time_deltas_sec / self.time_deltas_sec.max() # [num_timesteps]
return time_deltas_norm.detach()
# class Waypointer(nn.Module):
class TrajectoryVLA(PrismaticForConditionalGeneration):
# class TrajectoryVLA(nn.Module):
config_class: PretrainedConfig = TrajectoryVLAConfig
def __init__(self, config: TrajectoryVLAConfig) -> None:
super().__init__(config.prismatic_config)
self.control_tokenizer = WaypointTokenizer(self.llm_backbone.tokenizer)
self.timestep_proj = TimestepProjModule(
config.timestep_proj_config,
num_timesteps=config.num_timesteps,
token_size=config.token_size, )
self.num_timesteps = config.num_timesteps
self.token_proj = TokenProjector(config.token_proj_config)
self.transformer = DETR(config.transformer_config)
self.token_size = config.token_size
self.rotation_components = config.rotation_components
# if self.config.separate_control_proj:
# Project translation, rotation and gripper separately. Each timestep is projected separately
self.translation_proj = torch.nn.Sequential(
torch.nn.Linear(in_features=config.token_size, out_features=config.token_size // 2),
torch.nn.ReLU(),
torch.nn.Linear(in_features=config.token_size // 2, out_features=3),
)
self.rotation_proj = torch.nn.Sequential(
torch.nn.Linear(in_features=config.token_size, out_features=config.token_size // 2),
torch.nn.ReLU(),
torch.nn.Linear(
in_features=config.token_size // 2, out_features=config.rotation_components
),
)
self.gripper_proj = torch.nn.Sequential(
torch.nn.Linear(in_features=config.token_size, out_features=config.token_size // 2),
torch.nn.ReLU(),
torch.nn.Linear(in_features=config.token_size // 2, out_features=1),
)
def _pack_waypointer_input(self, input_ids: torch.Tensor, vlm_output: PrismaticCausalLMOutputWithPast,vit_tokens,fused_attention_mask) -> WaypointerInput:
# Get the LLM output
# assert vlm_output.llm_output.hidden_states is not None
projected_tokens = vlm_output.hidden_states[-1]
control_tokens = self._extract_control_tokens(input_ids, projected_tokens) # type: ignore
num_image_tokens = vit_tokens.shape[1] # type: ignore[union-attr]
# TODO: This assumes a specific position of image tokens in the sequence. Make general
llm_image_tokens = projected_tokens[..., 1 : 1 + num_image_tokens, :]
return WaypointerInput(
vit_tokens=vit_tokens,
llm_image_tokens=llm_image_tokens,
control_tokens=control_tokens,
llm_tokens=projected_tokens,
attn_mask=fused_attention_mask,
)
def predict_tracks(self,inputs):
vlm_output,vit_tokens,fused_attention_mask = super().forward(**inputs,output_hidden_states=True,output_attentions=True,return_dict=True)
waypointer_input = self._pack_waypointer_input(inputs['input_ids'], vlm_output,vit_tokens,fused_attention_mask)
waypoint_output = self._waypointer_forward(waypointer_input)
translation, rotation, gripper = torch.split(
waypoint_output, [3, self.rotation_components, 1], dim=-1 )
translation, rotation, gripper = self.process_output(translation, rotation, gripper)
return translation, rotation, gripper
def process_output(self,translation,rotation,gripper):
## convert rotation from matrix to euler angles
euler_angles = []
for matrix in rotation[0]:
# Convert each rotation matrix to a Rotation object
rotation_obj = R.from_matrix(matrix.view(3, 3).detach().cpu().float().numpy().squeeze())
# Convert to Euler angles in radians with chosen convention, e.g., 'xyz'
euler_angle = rotation_obj.as_euler('xyz', degrees=False)
euler_angles.append(euler_angle)
translation = translation.detach().cpu().float().numpy().squeeze()
## sigmoid and clip from 0-1
gripper = np.round(torch.sigmoid(gripper).detach().cpu().float().numpy().squeeze())
return translation,euler_angles,gripper
def _extract_control_tokens(self, input_ids: torch.Tensor, output_tokens: torch.Tensor) -> torch.Tensor:
"""
Extract the action tokens from the LLM output sequence. Assumes the following order
[image_tokens, language_tokens, action_tokens, padding]
Args:
input_ids: IDs of the tokens in text input sequence; shape [B, S]
output_tokens: Token sequence output from LLM; shape [B, L, token_size]. Note the length is
different from input_ids as it also contains image tokens
Returns:
torch.Tensor of shape [B, 7, token_size] containing only action tokens
"""
assert input_ids.ndim == 2
assert output_tokens.ndim == 3
batch, in_seq_len, out_seq_len = *input_ids.shape, output_tokens.shape[1]
device = input_ids.device
num_control_tokens = self.control_tokenizer.num_control_tokens # type: ignore[attr-defined]
control_token_ids = torch.from_numpy( # type: ignore[attr-defined]
self.control_tokenizer.control_token_ids # type: ignore[attr-defined]
)
control_token_ids = control_token_ids.to(dtype=input_ids.dtype, device=input_ids.device)
is_control_token = torch.any( # shape: [B, S]
input_ids.unsqueeze(-1) == control_token_ids.view(1, 1, -1),
dim=-1,
)
if not torch.all(mask := is_control_token.sum(dim=-1) == num_control_tokens):
raise RuntimeError(
f"Can't properly detect control tokens with ids {control_token_ids} of len="
f"{len(control_token_ids)} in input_ids {input_ids}. Rows mask: {mask}"
)
# Pad is_control_tokens mask to the LLM output sequence size
tokens_mask = torch.cat( # shape: [B, L]
[
torch.zeros(batch, out_seq_len - in_seq_len, dtype=torch.bool, device=device),
is_control_token.to(torch.bool),
],
dim=1,
)
control_tokens = output_tokens[tokens_mask] # shape: 1D tensor
control_tokens = control_tokens.view( # [B, num_control_tokens, token_size]
batch, num_control_tokens, output_tokens.shape[-1]
)
return control_tokens
def _waypointer_forward(self, inputs:WaypointerInput):
timesteps_tokens = self.timestep_proj() # [1, num_timesteps * 3, token_size]
# Project and pack LLM tokens
llm_tokens = self.token_proj(inputs) # [B, num_tokens, token_size]
# TODO: Pass inputs.attn_mask if you start using the LLM tokens
output_tokens = self.transformer( # [B, num_timesteps * 3, token_size]
feature_tokens=llm_tokens, query_tokens=timesteps_tokens, attn_mask=None
)
output_tokens = output_tokens.view( # [B, num_timesteps, 3 * token_size]
-1, self.num_timesteps, 3 * self.token_size
)
# if self.config.separate_control_proj:
# [B, num_timesteps, token_size] each
translation_tokens, rotation_tokens, gripper_tokens = torch.split(
output_tokens, [self.token_size] * 3, dim=-1
)
translation = self.translation_proj(translation_tokens) # [B, num_timesteps, 3]
rotation = self.rotation_proj(rotation_tokens) # [B, num_timesteps, rotation_components]
gripper = self.gripper_proj(gripper_tokens) # [B, num_timesteps, 1]
output = torch.cat( # [B, num_timesteps, control_components]
[translation, rotation, gripper], dim=-1
)
return output
# def predict_waypoints(self,input_ids: Optional[torch.LongTensor] = None, **kwargs: str) -> np.ndarray:
# vlm_output = super().forward(
# inputs=input_ids,
# use_cache=use_cache,
# output_attentions=output_attentions,
# output_hidden_states=True,
# return_dict=return_dict,
# )
@staticmethod
def _check_unnorm_key(norm_stats: Dict[str, Dict[str, Any]], unnorm_key: Optional[str]) -> str:
if unnorm_key is None and len(norm_stats) != 1:
raise ValueError(
f"Your model was trained on more than one dataset. "
f"Please pass a `unnorm_key` from the following options to choose the statistics used for "
f"de-normalizing actions: {norm_stats.keys()}"
)
# If None, grab the (singular) dataset in `norm_stats` to use as `unnorm_key`
unnorm_key = unnorm_key if unnorm_key is not None else next(iter(norm_stats.keys()))
if unnorm_key not in norm_stats:
raise ValueError(
f"The `unnorm_key` you chose ({unnorm_key = }) is not in the available statistics. "
f"Please choose from: {norm_stats.keys()}"
)
return unnorm_key
def get_action_dim(self, unnorm_key: Optional[str] = None) -> int:
"""Get the dimensionality of the policy's action space."""
unnorm_key = self._check_unnorm_key(self.norm_stats, unnorm_key)
return len(self.norm_stats[unnorm_key]["action"]["q01"])
def get_action_stats(self, unnorm_key: Optional[str] = None) -> Dict[str, Any]:
"""Get all the logged statistics for the given dataset."""
unnorm_key = self._check_unnorm_key(self.norm_stats, unnorm_key)
return self.norm_stats[unnorm_key]["action"]
def remove_waypointer_prefix(ckpt):
new_state_dict = {}
for key, value in ckpt.items():
# Remove the 'waypointer.' prefix if it exists
if key.startswith('waypointer.'):
new_key = key[len('waypointer.'):]
else:
new_key = key
new_state_dict[new_key] = value
return new_state_dict
def image_processor(image):
image_resolution = (3,224,224)
image = image.resize(image_resolution[1:], resample=Image.Resampling.LANCZOS)
def read_pt(pt_path):
data = torch.load(pt_path)
return data
# model_input = read_pt('/work/nikolay_nikolov/debug/inference/model_input.pt')
# vit_output = read_pt('/work/nikolay_nikolov/debug/inference/vit_output.pt')['vit_output']
# llm_output = read_pt('/work/nikolay_nikolov/debug/inference/llm_output.pt')['llm_output']
# projector_output = read_pt('/work/nikolay_nikolov/debug/inference/projector_output.pt')['projector_output']
# transformer_input = read_pt('/work/nikolay_nikolov/debug/inference/transformer_input.pt')
# feature_tokens = transformer_input['feature_tokens']
# timestep_tokens = transformer_input['timestep_tokens']
# # waypointer_input_nikolay = read_pt('/work/nikolay_nikolov/debug/inference/waypointer_input.pt')
# transformer_input = read_pt('/work/nikolay_nikolov/debug/inference/transformer_input.pt')
# control_target = read_pt('/work/nikolay_nikolov/debug/inference/control_target.pt')
if __name__ == "__main__":
prismatic_config_dict = {
"vision_backbone_id":"dinosiglip-vit-so-224px",
"llm_backbone_id":"llama2-7b-pure",
"arch_specifier": "no-align+gelu-mlp", ## TODO: check
"use_fused_vision_backbone" :True, ## TODO: check
"image_resize_strategy" : "letterbox",
"text_config" : None,
"llm_max_length" : 2048,
"pad_token_id" :32000,
"pad_to_multiple_of" : 64,
"output_projector_states" : False,
"return_dict": False,
}
token_proj_config = {
"vit_tokens_layers": [2176, 1024],
"control_tokens_layers": [4096, 2048, 1024],
"image_tokens_mode": 'vit',
'llm_image_tokens_layers': []
}
timestep_proj_config = {
"pos_embed_scale": 8,
"proj_layers": [128,512,1024],
"time_delta_sec": 0.1,
"num_tokens":3
}
pos_embed_config = {
"num_embeddings": 300,
"embedding_dim": 1024
}
encoder_block_config = {
"feature_size": 1024,
"head_dim": 64,
"num_heads": 16
}
decoder_block_config = {
"feature_size": 1024,
"head_dim": 64,
"num_heads": 16,
"dropout": 0.0
}
transformer_config = {
"pos_embed_config": pos_embed_config,
"encoder_block_config": encoder_block_config,
"decoder_block_config": decoder_block_config,
"num_blocks": 2
}
# transformer_config:
# autoclass: barrel.components.nn.layers.detr.DETR
# pos_embed_config:
# autoclass: barrel.components.nn.layers.positional_encodings.LearnedPosEmbed1D
# num_embeddings: 300 # Max number of input tokens
# embedding_dim: *token_size # token_size
# # num_embeddings: 256 # Number of image tokens
# # embedding_dim: 512 # token_size / 2
# encoder_block_config:
# autoclass: barrel.components.nn.layers.detr.TransformerEncoderBlock
# feature_size: *token_size
# # head_dim: 128
# # num_heads: 8
# head_dim: 64
# num_heads: 16
# decoder_block_config:
# autoclass: barrel.components.nn.layers.detr.TransformerDecoderBlock
# feature_size: *token_size
# # head_dim: 128
# # num_heads: 8
# head_dim: 64
# num_heads: 16
TrajectoryVlaConfig_config = {
"prismatic_config":prismatic_config_dict,
"token_size": 1024,
"cheat": False,
"num_timesteps": 6,
"rotation_components": 9,
"seperate_control_proj": True,
"timestep_proj_config": timestep_proj_config,
"token_proj_config": token_proj_config,
"transformer_config": transformer_config,
"num_timestep_tokens": 3,
}
# ckpt_path = '/work/nikolay_nikolov/debug/inference/model.ckpt'
# ckpt_params = torch.load(ckpt_path, map_location='cpu', mmap= True)
# ckpt_params = remove_waypointer_prefix(ckpt_params)
## Testing for prismatic
model_config = TrajectoryVLAConfig( **TrajectoryVlaConfig_config)
# model.load_state_dict(ckpt_params, strict=True)
model = TrajectoryVLA(model_config)
model = model.to(dtype=torch.bfloat16)
model = model.to('cuda')
model.eval()
# with autocast('cuda',dtype=torch.bfloat16):
# with torch.no_grad():
# output = model.predict_tracks(model_input)
# Get matched keys by finding keys that exist in both the model and checkpoint
# TrajectoryVLA.load_state_dict(ckpt_params, strict=False)
# model_keys = set(TrajectoryVLA.state_dict().keys())
# checkpoint_keys = set(ckpt_params.keys())
# matched_keys = model_keys.intersection(checkpoint_keys)
# print('Matched Keys:')
# for key in matched_keys:
# print(key)
# embed()
# hf_image_processor.push_to_hub(cfg.output_hf_model_hub_path)
# hf_processor.push_to_hub(cfg.output_hf_model_hub_path)
# import code; code.interact(local=vars())
|