File size: 2,094 Bytes
b175bd7 0e36677 b175bd7 0e36677 b175bd7 0e36677 b175bd7 0e36677 b175bd7 226a362 b175bd7 226a362 b175bd7 226a362 b175bd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: mit
tags:
- generated_from_trainer
datasets:
- wikiann
metrics:
- f1
base_model: xlm-roberta-base
model-index:
- name: xlm-roberta-base-finetuned-wikiann-hi
results:
- task:
type: token-classification
name: Token Classification
dataset:
name: wikiann
type: wikiann
args: hi
metrics:
- type: f1
value: 1.0
name: F1
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-wikiann-hi
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the wikiann dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3097
- F1: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:---:|
| 0.5689 | 1.0 | 209 | 0.3179 | 1.0 |
| 0.2718 | 2.0 | 418 | 0.2733 | 1.0 |
| 0.19 | 3.0 | 627 | 0.2560 | 1.0 |
| 0.142 | 4.0 | 836 | 0.2736 | 1.0 |
| 0.0967 | 5.0 | 1045 | 0.2686 | 1.0 |
| 0.0668 | 6.0 | 1254 | 0.2966 | 1.0 |
| 0.052 | 7.0 | 1463 | 0.3194 | 1.0 |
| 0.0369 | 8.0 | 1672 | 0.3034 | 1.0 |
| 0.0236 | 9.0 | 1881 | 0.3174 | 1.0 |
| 0.0135 | 10.0 | 2090 | 0.3097 | 1.0 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|