Sorour commited on
Commit
407ec3b
·
verified ·
1 Parent(s): 9d4b40c

Model save

Browse files
Files changed (1) hide show
  1. README.md +100 -0
README.md ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama3
3
+ library_name: peft
4
+ tags:
5
+ - trl
6
+ - sft
7
+ - generated_from_trainer
8
+ base_model: meta-llama/Meta-Llama-3-8B-Instruct
9
+ datasets:
10
+ - generator
11
+ model-index:
12
+ - name: cls_alldata_llama3_v1
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # cls_alldata_llama3_v1
20
+
21
+ This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the generator dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.4523
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 0.0002
43
+ - train_batch_size: 2
44
+ - eval_batch_size: 8
45
+ - seed: 42
46
+ - gradient_accumulation_steps: 4
47
+ - total_train_batch_size: 8
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: constant
50
+ - lr_scheduler_warmup_ratio: 0.03
51
+ - num_epochs: 2
52
+ - mixed_precision_training: Native AMP
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss |
57
+ |:-------------:|:------:|:----:|:---------------:|
58
+ | 0.6921 | 0.0582 | 20 | 0.6831 |
59
+ | 0.5975 | 0.1164 | 40 | 0.6416 |
60
+ | 0.6107 | 0.1747 | 60 | 0.6082 |
61
+ | 0.5609 | 0.2329 | 80 | 0.5883 |
62
+ | 0.5857 | 0.2911 | 100 | 0.5761 |
63
+ | 0.5386 | 0.3493 | 120 | 0.5660 |
64
+ | 0.5176 | 0.4076 | 140 | 0.5529 |
65
+ | 0.5317 | 0.4658 | 160 | 0.5379 |
66
+ | 0.5244 | 0.5240 | 180 | 0.5292 |
67
+ | 0.5218 | 0.5822 | 200 | 0.5234 |
68
+ | 0.5003 | 0.6405 | 220 | 0.5207 |
69
+ | 0.5024 | 0.6987 | 240 | 0.5096 |
70
+ | 0.4913 | 0.7569 | 260 | 0.5062 |
71
+ | 0.5174 | 0.8151 | 280 | 0.5003 |
72
+ | 0.4675 | 0.8734 | 300 | 0.4968 |
73
+ | 0.5137 | 0.9316 | 320 | 0.4903 |
74
+ | 0.4883 | 0.9898 | 340 | 0.4869 |
75
+ | 0.3616 | 1.0480 | 360 | 0.4935 |
76
+ | 0.3713 | 1.1063 | 380 | 0.4890 |
77
+ | 0.365 | 1.1645 | 400 | 0.4856 |
78
+ | 0.3732 | 1.2227 | 420 | 0.4838 |
79
+ | 0.3717 | 1.2809 | 440 | 0.4842 |
80
+ | 0.3657 | 1.3392 | 460 | 0.4811 |
81
+ | 0.3767 | 1.3974 | 480 | 0.4762 |
82
+ | 0.3859 | 1.4556 | 500 | 0.4763 |
83
+ | 0.3773 | 1.5138 | 520 | 0.4712 |
84
+ | 0.3615 | 1.5721 | 540 | 0.4671 |
85
+ | 0.3656 | 1.6303 | 560 | 0.4666 |
86
+ | 0.3497 | 1.6885 | 580 | 0.4658 |
87
+ | 0.3818 | 1.7467 | 600 | 0.4621 |
88
+ | 0.3759 | 1.8049 | 620 | 0.4626 |
89
+ | 0.3539 | 1.8632 | 640 | 0.4551 |
90
+ | 0.3985 | 1.9214 | 660 | 0.4525 |
91
+ | 0.3668 | 1.9796 | 680 | 0.4523 |
92
+
93
+
94
+ ### Framework versions
95
+
96
+ - PEFT 0.11.1
97
+ - Transformers 4.41.1
98
+ - Pytorch 2.3.0+cu121
99
+ - Datasets 2.19.1
100
+ - Tokenizers 0.19.1