Model save
Browse files
README.md
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
base_model: nvidia/mit-b0
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: segformer-finetuned-rwymarkings-2-steps
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# segformer-finetuned-rwymarkings-2-steps
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 2.2162
|
19 |
+
- Mean Iou: 0.0387
|
20 |
+
- Mean Accuracy: 0.1129
|
21 |
+
- Overall Accuracy: 0.1050
|
22 |
+
- Accuracy Backgound : nan
|
23 |
+
- Accuracy Tdz: 0.0493
|
24 |
+
- Accuracy Aim: 0.2144
|
25 |
+
- Accuracy Desig: 0.0922
|
26 |
+
- Accuracy Rwythr: 0.1765
|
27 |
+
- Accuracy Thrbar: 0.0140
|
28 |
+
- Accuracy Disp: 0.2710
|
29 |
+
- Accuracy Chevron: 0.0023
|
30 |
+
- Accuracy Arrow: 0.0834
|
31 |
+
- Iou Backgound : 0.0
|
32 |
+
- Iou Tdz: 0.0399
|
33 |
+
- Iou Aim: 0.1158
|
34 |
+
- Iou Desig: 0.0443
|
35 |
+
- Iou Rwythr: 0.0980
|
36 |
+
- Iou Thrbar: 0.0131
|
37 |
+
- Iou Disp: 0.0266
|
38 |
+
- Iou Chevron: 0.0020
|
39 |
+
- Iou Arrow: 0.0085
|
40 |
+
|
41 |
+
## Model description
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Intended uses & limitations
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training and evaluation data
|
50 |
+
|
51 |
+
More information needed
|
52 |
+
|
53 |
+
## Training procedure
|
54 |
+
|
55 |
+
### Training hyperparameters
|
56 |
+
|
57 |
+
The following hyperparameters were used during training:
|
58 |
+
- learning_rate: 6e-05
|
59 |
+
- train_batch_size: 8
|
60 |
+
- eval_batch_size: 8
|
61 |
+
- seed: 1337
|
62 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
+
- lr_scheduler_type: polynomial
|
64 |
+
- training_steps: 2
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Backgound | Accuracy Tdz | Accuracy Aim | Accuracy Desig | Accuracy Rwythr | Accuracy Thrbar | Accuracy Disp | Accuracy Chevron | Accuracy Arrow | Iou Backgound | Iou Tdz | Iou Aim | Iou Desig | Iou Rwythr | Iou Thrbar | Iou Disp | Iou Chevron | Iou Arrow |
|
69 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------------:|:------------:|:------------:|:--------------:|:---------------:|:---------------:|:-------------:|:----------------:|:--------------:|:---------------:|:-------:|:-------:|:---------:|:----------:|:----------:|:--------:|:-----------:|:---------:|
|
70 |
+
| 2.2475 | 0.0455 | 2 | 2.2162 | 0.0387 | 0.1129 | 0.1050 | nan | 0.0493 | 0.2144 | 0.0922 | 0.1765 | 0.0140 | 0.2710 | 0.0023 | 0.0834 | 0.0 | 0.0399 | 0.1158 | 0.0443 | 0.0980 | 0.0131 | 0.0266 | 0.0020 | 0.0085 |
|
71 |
+
|
72 |
+
|
73 |
+
### Framework versions
|
74 |
+
|
75 |
+
- Transformers 4.43.0.dev0
|
76 |
+
- Pytorch 2.3.0+cu121
|
77 |
+
- Datasets 2.20.0
|
78 |
+
- Tokenizers 0.19.1
|