--- license: other base_model: nvidia/mit-b0 tags: - image-segmentation - vision - generated_from_trainer model-index: - name: segformer-finetuned-rwymarkings-2-steps results: [] --- # segformer-finetuned-rwymarkings-2-steps This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the Spatiallysaying/rwymarkings dataset. It achieves the following results on the evaluation set: - Loss: 2.2162 - Mean Iou: 0.0387 - Mean Accuracy: 0.1129 - Overall Accuracy: 0.1050 - Accuracy Backgound : nan - Accuracy Tdz: 0.0493 - Accuracy Aim: 0.2144 - Accuracy Desig: 0.0922 - Accuracy Rwythr: 0.1765 - Accuracy Thrbar: 0.0140 - Accuracy Disp: 0.2710 - Accuracy Chevron: 0.0023 - Accuracy Arrow: 0.0834 - Iou Backgound : 0.0 - Iou Tdz: 0.0399 - Iou Aim: 0.1158 - Iou Desig: 0.0443 - Iou Rwythr: 0.0980 - Iou Thrbar: 0.0131 - Iou Disp: 0.0266 - Iou Chevron: 0.0020 - Iou Arrow: 0.0085 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: polynomial - training_steps: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Backgound | Accuracy Tdz | Accuracy Aim | Accuracy Desig | Accuracy Rwythr | Accuracy Thrbar | Accuracy Disp | Accuracy Chevron | Accuracy Arrow | Iou Backgound | Iou Tdz | Iou Aim | Iou Desig | Iou Rwythr | Iou Thrbar | Iou Disp | Iou Chevron | Iou Arrow | |:-------------:|:------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------------:|:------------:|:------------:|:--------------:|:---------------:|:---------------:|:-------------:|:----------------:|:--------------:|:---------------:|:-------:|:-------:|:---------:|:----------:|:----------:|:--------:|:-----------:|:---------:| | 2.2475 | 0.0455 | 2 | 2.2162 | 0.0387 | 0.1129 | 0.1050 | nan | 0.0493 | 0.2144 | 0.0922 | 0.1765 | 0.0140 | 0.2710 | 0.0023 | 0.0834 | 0.0 | 0.0399 | 0.1158 | 0.0443 | 0.0980 | 0.0131 | 0.0266 | 0.0020 | 0.0085 | ### Framework versions - Transformers 4.43.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1