File size: 12,641 Bytes
503ec99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
# coding=utf-8 
# copyright by speechflow  2023/03/17

import argparse
import tensorflow as tf
gpus = tf.config.list_physical_devices('GPU')
# tf.config.set_visible_devices(gpus[0:1], 'GPU')
import datetime
import time
import os
from shutil import copyfile
import matplotlib.pyplot as plt
from vocab.vocab import Vocab
from configs.config import Config
from models.model import MulSpeechLR as Model
from termcolor import colored
from featurizers.speech_featurizers import NumpySpeechFeaturizer
from dataset import create_dataset
import tensorflow_addons as tfa
from sklearn.metrics import f1_score, recall_score, precision_score
mirrored_strategy = tf.distribute.MirroredStrategy()


def train(config_file):
    config = Config(config_file)
    current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
    dir_log_root = "./saved_weights/"
    if not os.path.exists(dir_log_root):
        os.mkdir(dir_log_root)
    dir_current = dir_log_root + current_time
    if not os.path.isdir(dir_log_root):
        os.mkdir(dir_log_root)
    if not os.path.isdir(dir_current):
        os.mkdir(dir_current)
    copyfile(config_file, dir_current + '/config.yml')
    log_file = open(dir_current + '/log.txt', 'w')
    copyfile(config.dataset_config['vocabulary'], dir_current + '/vocab.txt')
    
   
    config.print()
    log_file.write(config.toString())
    # vocab_file.write(config.toString())
    log_file.flush()

    vocab = Vocab(config.dataset_config['vocabulary'])
    batch_size = config.running_config['batch_size']
    global_batch_size = batch_size * mirrored_strategy.num_replicas_in_sync
    speech_featurizer = NumpySpeechFeaturizer(config.speech_config)
    model = Model(**config.model_config, vocab_size=len(vocab.token_list))
    if config.running_config['load_weights'] is not None:
        model.load_weights(config.running_config['load_weights'])
    model.add_featurizers(speech_featurizer)
    model.init_build([None, config.speech_config['num_feature_bins']])
    model.summary()

    train_dataset = create_dataset(batch_size=global_batch_size,
                                load_type=config.dataset_config['load_type'],
                                data_type=config.dataset_config['train'],
                                speech_featurizer=speech_featurizer,
                                config = config,
                                vocab = vocab)
    eval_dataset = create_dataset(batch_size=global_batch_size,
                                load_type=config.dataset_config['load_type'],
                                data_type=config.dataset_config['dev'],
                                speech_featurizer=speech_featurizer,
                                config = config,
                                vocab = vocab)
    test_dataset = create_dataset(batch_size=global_batch_size,
                                load_type=config.dataset_config['load_type'],
                                data_type=config.dataset_config['test'],
                                speech_featurizer=speech_featurizer,
                                config = config,
                                vocab = vocab)
    train_dist_batch = mirrored_strategy.experimental_distribute_dataset(train_dataset)
    dev_dist_batch = mirrored_strategy.experimental_distribute_dataset(eval_dataset)
    test_dist_batch = mirrored_strategy.experimental_distribute_dataset(test_dataset)
    dev_loss = tf.keras.metrics.Mean(name='dev_loss')
    train_loss = tf.keras.metrics.Mean(name='train_loss')
    dev_accuracy = tf.keras.metrics.Mean(name='train_accuracy')
    init_steps = config.optimizer_config['init_steps']
    step = tf.Variable(init_steps)
    
    optimizer = tf.keras.optimizers.Adam(lr=config.optimizer_config['max_lr'])
    ckpt = tf.train.Checkpoint(step=step, optimizer=optimizer, model=model)
    ckpt_manager = tf.train.CheckpointManager(ckpt, dir_current + '/ckpt', max_to_keep=5)
    loss_object = tfa.losses.SigmoidFocalCrossEntropy(
            from_logits = True,
            alpha = 0.25,
            gamma  = 0,
        reduction  = tf.keras.losses.Reduction.NONE)
    loss_object_label_smooth = tf.keras.losses.CategoricalCrossentropy(
    from_logits=True, label_smoothing=0.1, reduction=tf.keras.losses.Reduction.NONE)

    def compute_loss(real, pred, smooth=False):
        if smooth:
            loss_ = loss_object_label_smooth(tf.one_hot(real, len(vocab.token_list)), pred)
        else:
            real = tf.one_hot(real, len(vocab.token_list))
            loss_ = loss_object(real, pred)
        return tf.nn.compute_average_loss(loss_, global_batch_size=global_batch_size)

    def accuracy_function(real, pred):
        pred = tf.cast(pred, dtype=tf.int32)
        accuracies = tf.equal(real, pred)

        mask = tf.math.logical_not(tf.math.equal(real, 0))
        accuracies = tf.math.logical_and(mask, accuracies)

        accuracies = tf.cast(accuracies, dtype=tf.float32)
        mask = tf.cast(mask, dtype=tf.float32)

        return tf.reduce_sum(accuracies)/tf.reduce_sum(mask)

    @tf.function
    def train_step(input, input_length, target):
        with tf.GradientTape() as tape:
            predictions = model([input, input_length], training=True)
            loss = compute_loss(target, predictions, smooth=True)
        grads = tape.gradient(loss, model.trainable_variables)
        optimizer.apply_gradients(zip(grads, model.trainable_variables))
        return loss

    @tf.function
    def dev_step(input, input_length, target):
        predictions = model([input, input_length], training=False)
        t_loss = compute_loss(target, predictions, smooth=True)
        
        return t_loss, predictions

    @tf.function
    def test_step(input, input_length, target):
        predictions = model([input, input_length], training=False)
        return predictions, target

    @tf.function(experimental_relax_shapes=True)
    def distributed_train_step(x, x_len, y):
        per_replica_losses = mirrored_strategy.run(train_step, args=(x, x_len, y))
        mean_loss = mirrored_strategy.reduce(tf.distribute.ReduceOp.SUM, per_replica_losses, axis=None)
        return mean_loss

    @tf.function(experimental_relax_shapes=True)
    def distributed_dev_step(x, x_len, y):
        per_replica_losses, per_replica_preds = mirrored_strategy.run(dev_step, args=(x, x_len, y))
        mean_loss = mirrored_strategy.reduce(tf.distribute.ReduceOp.SUM, per_replica_losses, axis=None)
        return mean_loss, per_replica_preds
        

    @tf.function(experimental_relax_shapes=True)
    def distributed_test_step(x, x_len, y):
        return mirrored_strategy.run(test_step, args=(x, x_len, y))

    plot_train_loss = []
    plot_dev_loss = []
    plot_acc, plot_precision = [], []
    best_acc= 0
    train_iter = iter(train_dist_batch)
    dev_iter = iter(dev_dist_batch)
    test_iter = iter(test_dist_batch)

    for epoch in range(1, config.running_config['num_epochs'] + 1):
        if config.dataset_config['load_type']=='txt':
            train_iter = iter(train_dist_batch)
            dev_iter = iter(dev_dist_batch)
            test_iter = iter(test_dist_batch)
        start = time.time()
        # training loop
        train_loss = 0.0
        dev_loss = 0.0
        for train_batches in range(config.running_config['train_steps']):
            inp, inp_len, target = next(train_iter)
            train_loss += distributed_train_step(inp, inp_len, target)
            template = '\rEpoch {} Step {} Loss {:.4f}'
            print(colored(template.format(
                epoch, train_batches + 1, train_loss / (train_batches + 1),
                ), 'green'), end='', flush=True)
            step.assign_add(1)

        # validation loop
        pred_all = tf.zeros([1], dtype=tf.int32)
        true_all = tf.zeros([1], dtype=tf.int32)
        for dev_batches in range(config.running_config['dev_steps']):
            inp, inp_len, target = next(dev_iter)
            loss, predicted_result = distributed_dev_step(inp, inp_len, target)
            dev_loss += loss
            if mirrored_strategy.num_replicas_in_sync == 1:
                prediction = tf.nn.softmax(predicted_result)
                y_pred = tf.argmax(prediction, axis=-1)
                y_pred = tf.cast(y_pred, dtype=tf.int32)
                pred_all = tf.concat([pred_all, y_pred], axis=0)
                true_all = tf.concat([true_all, target], axis=0)
            else:
                for i in range(mirrored_strategy.num_replicas_in_sync):
                    predicted_result_per_replica = predicted_result.values[i]
                    y_true = target.values[i]
                    y_pred = tf.argmax(predicted_result_per_replica, axis=-1)
                    y_pred = tf.cast(y_pred, dtype=tf.int32)
                    pred_all = tf.concat([pred_all, y_pred], axis=0)
                    true_all = tf.concat([true_all, y_true], axis=0)
        dev_accuracy = accuracy_function(true_all, pred_all)

        pred_all = tf.zeros([1], dtype=tf.int32)
        true_all = tf.zeros([1], dtype=tf.int32)
        for test_batches in range(config.running_config['test_steps']):
            inp, inp_len, target = next(test_iter)
            predicted_result, target_result = distributed_test_step(inp, inp_len, target)
            if mirrored_strategy.num_replicas_in_sync == 1:
                prediction = tf.nn.softmax(predicted_result)
                y_pred =tf.argmax(prediction, axis=-1)
                y_pred = tf.cast(y_pred, dtype=tf.int32)
                pred_all = tf.concat([pred_all, y_pred], axis=0)
                true_all = tf.concat([true_all, target], axis=0)
            else:
                for replica in range(mirrored_strategy.num_replicas_in_sync):
                    predicted_result_per_replica = predicted_result.values[i]
                    y_true = target.values[i]
                    y_pred = tf.argmax(predicted_result_per_replica, axis=-1)
                    y_pred = tf.cast(y_pred, dtype=tf.int32)
                    pred_all = tf.concat([pred_all, y_pred], axis=0)
                    true_all = tf.concat([true_all, y_true], axis=0)
        
        test_acc =  accuracy_function(real=true_all, pred=pred_all)
       
        test_f1 = f1_score(y_true=true_all, y_pred=pred_all, average='macro')
        precision = precision_score(y_true=true_all, y_pred=pred_all, average='macro', zero_division=1)
        recall = recall_score(y_true=true_all, y_pred=pred_all, average='macro')
        if precision > best_acc:
            best_acc = precision
            model.save_weights(dir_current + '/best/' + 'model')
        model.save_weights(dir_current + '/last/' + 'model')
        template = ("\rEpoch {}, Loss: {:.4f}, Val Loss: {:.4f}, "
                    "Val Acc: {:.4f}, test ACC: {:.4f},F1: {:.4f}, precision: {:.4f}, recall: {:.4f}, Time Cost: {:.2f} sec")
        text = template.format(epoch, train_loss / config.running_config['train_steps'],
                               dev_loss/ config.running_config['dev_steps'], dev_accuracy *100,
                               test_acc*100, test_f1*100, precision*100, recall*100, time.time() - start)
        print(colored(text, 'cyan'))
        log_file.write(text)
        log_file.flush()
        plot_train_loss.append(train_loss / config.running_config['train_steps'])
        plot_dev_loss.append(dev_loss / config.running_config['dev_steps'])
        plot_acc.append(test_acc)
        plot_precision.append(precision)
        ckpt_manager.save()

        plt.plot(plot_train_loss, '-r', label='train_loss')
        plt.title('Train Loss')
        plt.xlabel('Epochs')
        plt.savefig(dir_current + '/loss.png')
        #plot dev
        plt.clf()
        plt.plot(plot_dev_loss, '-g', label='dev_loss')
        plt.title('dev Loss')
        plt.xlabel('Epochs')
        plt.savefig(dir_current + '/dev_loss.png')

        # plot acc curve
        plt.clf()
        plt.plot(plot_acc, 'b-', label='acc')
        plt.title('Accuracy')
        plt.xlabel('Epochs')
        plt.savefig(dir_current + '/acc.png')
        # plot f1 curve
        plt.clf()
        plt.plot(plot_precision, 'y-', label='f1-score')
        plt.title('F1')
        plt.xlabel('Epochs')
        plt.savefig(dir_current + '/f1-score.png')


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Spoken_language_identification Model training")
    parser.add_argument("--config_file", type=str, default='./configs/config.yml', help="Config File Path")
    args = parser.parse_args()
    kwargs = vars(args)
    with mirrored_strategy.scope():
        train(**kwargs)