File size: 12,641 Bytes
503ec99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
# coding=utf-8
# copyright by speechflow 2023/03/17
import argparse
import tensorflow as tf
gpus = tf.config.list_physical_devices('GPU')
# tf.config.set_visible_devices(gpus[0:1], 'GPU')
import datetime
import time
import os
from shutil import copyfile
import matplotlib.pyplot as plt
from vocab.vocab import Vocab
from configs.config import Config
from models.model import MulSpeechLR as Model
from termcolor import colored
from featurizers.speech_featurizers import NumpySpeechFeaturizer
from dataset import create_dataset
import tensorflow_addons as tfa
from sklearn.metrics import f1_score, recall_score, precision_score
mirrored_strategy = tf.distribute.MirroredStrategy()
def train(config_file):
config = Config(config_file)
current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
dir_log_root = "./saved_weights/"
if not os.path.exists(dir_log_root):
os.mkdir(dir_log_root)
dir_current = dir_log_root + current_time
if not os.path.isdir(dir_log_root):
os.mkdir(dir_log_root)
if not os.path.isdir(dir_current):
os.mkdir(dir_current)
copyfile(config_file, dir_current + '/config.yml')
log_file = open(dir_current + '/log.txt', 'w')
copyfile(config.dataset_config['vocabulary'], dir_current + '/vocab.txt')
config.print()
log_file.write(config.toString())
# vocab_file.write(config.toString())
log_file.flush()
vocab = Vocab(config.dataset_config['vocabulary'])
batch_size = config.running_config['batch_size']
global_batch_size = batch_size * mirrored_strategy.num_replicas_in_sync
speech_featurizer = NumpySpeechFeaturizer(config.speech_config)
model = Model(**config.model_config, vocab_size=len(vocab.token_list))
if config.running_config['load_weights'] is not None:
model.load_weights(config.running_config['load_weights'])
model.add_featurizers(speech_featurizer)
model.init_build([None, config.speech_config['num_feature_bins']])
model.summary()
train_dataset = create_dataset(batch_size=global_batch_size,
load_type=config.dataset_config['load_type'],
data_type=config.dataset_config['train'],
speech_featurizer=speech_featurizer,
config = config,
vocab = vocab)
eval_dataset = create_dataset(batch_size=global_batch_size,
load_type=config.dataset_config['load_type'],
data_type=config.dataset_config['dev'],
speech_featurizer=speech_featurizer,
config = config,
vocab = vocab)
test_dataset = create_dataset(batch_size=global_batch_size,
load_type=config.dataset_config['load_type'],
data_type=config.dataset_config['test'],
speech_featurizer=speech_featurizer,
config = config,
vocab = vocab)
train_dist_batch = mirrored_strategy.experimental_distribute_dataset(train_dataset)
dev_dist_batch = mirrored_strategy.experimental_distribute_dataset(eval_dataset)
test_dist_batch = mirrored_strategy.experimental_distribute_dataset(test_dataset)
dev_loss = tf.keras.metrics.Mean(name='dev_loss')
train_loss = tf.keras.metrics.Mean(name='train_loss')
dev_accuracy = tf.keras.metrics.Mean(name='train_accuracy')
init_steps = config.optimizer_config['init_steps']
step = tf.Variable(init_steps)
optimizer = tf.keras.optimizers.Adam(lr=config.optimizer_config['max_lr'])
ckpt = tf.train.Checkpoint(step=step, optimizer=optimizer, model=model)
ckpt_manager = tf.train.CheckpointManager(ckpt, dir_current + '/ckpt', max_to_keep=5)
loss_object = tfa.losses.SigmoidFocalCrossEntropy(
from_logits = True,
alpha = 0.25,
gamma = 0,
reduction = tf.keras.losses.Reduction.NONE)
loss_object_label_smooth = tf.keras.losses.CategoricalCrossentropy(
from_logits=True, label_smoothing=0.1, reduction=tf.keras.losses.Reduction.NONE)
def compute_loss(real, pred, smooth=False):
if smooth:
loss_ = loss_object_label_smooth(tf.one_hot(real, len(vocab.token_list)), pred)
else:
real = tf.one_hot(real, len(vocab.token_list))
loss_ = loss_object(real, pred)
return tf.nn.compute_average_loss(loss_, global_batch_size=global_batch_size)
def accuracy_function(real, pred):
pred = tf.cast(pred, dtype=tf.int32)
accuracies = tf.equal(real, pred)
mask = tf.math.logical_not(tf.math.equal(real, 0))
accuracies = tf.math.logical_and(mask, accuracies)
accuracies = tf.cast(accuracies, dtype=tf.float32)
mask = tf.cast(mask, dtype=tf.float32)
return tf.reduce_sum(accuracies)/tf.reduce_sum(mask)
@tf.function
def train_step(input, input_length, target):
with tf.GradientTape() as tape:
predictions = model([input, input_length], training=True)
loss = compute_loss(target, predictions, smooth=True)
grads = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
return loss
@tf.function
def dev_step(input, input_length, target):
predictions = model([input, input_length], training=False)
t_loss = compute_loss(target, predictions, smooth=True)
return t_loss, predictions
@tf.function
def test_step(input, input_length, target):
predictions = model([input, input_length], training=False)
return predictions, target
@tf.function(experimental_relax_shapes=True)
def distributed_train_step(x, x_len, y):
per_replica_losses = mirrored_strategy.run(train_step, args=(x, x_len, y))
mean_loss = mirrored_strategy.reduce(tf.distribute.ReduceOp.SUM, per_replica_losses, axis=None)
return mean_loss
@tf.function(experimental_relax_shapes=True)
def distributed_dev_step(x, x_len, y):
per_replica_losses, per_replica_preds = mirrored_strategy.run(dev_step, args=(x, x_len, y))
mean_loss = mirrored_strategy.reduce(tf.distribute.ReduceOp.SUM, per_replica_losses, axis=None)
return mean_loss, per_replica_preds
@tf.function(experimental_relax_shapes=True)
def distributed_test_step(x, x_len, y):
return mirrored_strategy.run(test_step, args=(x, x_len, y))
plot_train_loss = []
plot_dev_loss = []
plot_acc, plot_precision = [], []
best_acc= 0
train_iter = iter(train_dist_batch)
dev_iter = iter(dev_dist_batch)
test_iter = iter(test_dist_batch)
for epoch in range(1, config.running_config['num_epochs'] + 1):
if config.dataset_config['load_type']=='txt':
train_iter = iter(train_dist_batch)
dev_iter = iter(dev_dist_batch)
test_iter = iter(test_dist_batch)
start = time.time()
# training loop
train_loss = 0.0
dev_loss = 0.0
for train_batches in range(config.running_config['train_steps']):
inp, inp_len, target = next(train_iter)
train_loss += distributed_train_step(inp, inp_len, target)
template = '\rEpoch {} Step {} Loss {:.4f}'
print(colored(template.format(
epoch, train_batches + 1, train_loss / (train_batches + 1),
), 'green'), end='', flush=True)
step.assign_add(1)
# validation loop
pred_all = tf.zeros([1], dtype=tf.int32)
true_all = tf.zeros([1], dtype=tf.int32)
for dev_batches in range(config.running_config['dev_steps']):
inp, inp_len, target = next(dev_iter)
loss, predicted_result = distributed_dev_step(inp, inp_len, target)
dev_loss += loss
if mirrored_strategy.num_replicas_in_sync == 1:
prediction = tf.nn.softmax(predicted_result)
y_pred = tf.argmax(prediction, axis=-1)
y_pred = tf.cast(y_pred, dtype=tf.int32)
pred_all = tf.concat([pred_all, y_pred], axis=0)
true_all = tf.concat([true_all, target], axis=0)
else:
for i in range(mirrored_strategy.num_replicas_in_sync):
predicted_result_per_replica = predicted_result.values[i]
y_true = target.values[i]
y_pred = tf.argmax(predicted_result_per_replica, axis=-1)
y_pred = tf.cast(y_pred, dtype=tf.int32)
pred_all = tf.concat([pred_all, y_pred], axis=0)
true_all = tf.concat([true_all, y_true], axis=0)
dev_accuracy = accuracy_function(true_all, pred_all)
pred_all = tf.zeros([1], dtype=tf.int32)
true_all = tf.zeros([1], dtype=tf.int32)
for test_batches in range(config.running_config['test_steps']):
inp, inp_len, target = next(test_iter)
predicted_result, target_result = distributed_test_step(inp, inp_len, target)
if mirrored_strategy.num_replicas_in_sync == 1:
prediction = tf.nn.softmax(predicted_result)
y_pred =tf.argmax(prediction, axis=-1)
y_pred = tf.cast(y_pred, dtype=tf.int32)
pred_all = tf.concat([pred_all, y_pred], axis=0)
true_all = tf.concat([true_all, target], axis=0)
else:
for replica in range(mirrored_strategy.num_replicas_in_sync):
predicted_result_per_replica = predicted_result.values[i]
y_true = target.values[i]
y_pred = tf.argmax(predicted_result_per_replica, axis=-1)
y_pred = tf.cast(y_pred, dtype=tf.int32)
pred_all = tf.concat([pred_all, y_pred], axis=0)
true_all = tf.concat([true_all, y_true], axis=0)
test_acc = accuracy_function(real=true_all, pred=pred_all)
test_f1 = f1_score(y_true=true_all, y_pred=pred_all, average='macro')
precision = precision_score(y_true=true_all, y_pred=pred_all, average='macro', zero_division=1)
recall = recall_score(y_true=true_all, y_pred=pred_all, average='macro')
if precision > best_acc:
best_acc = precision
model.save_weights(dir_current + '/best/' + 'model')
model.save_weights(dir_current + '/last/' + 'model')
template = ("\rEpoch {}, Loss: {:.4f}, Val Loss: {:.4f}, "
"Val Acc: {:.4f}, test ACC: {:.4f},F1: {:.4f}, precision: {:.4f}, recall: {:.4f}, Time Cost: {:.2f} sec")
text = template.format(epoch, train_loss / config.running_config['train_steps'],
dev_loss/ config.running_config['dev_steps'], dev_accuracy *100,
test_acc*100, test_f1*100, precision*100, recall*100, time.time() - start)
print(colored(text, 'cyan'))
log_file.write(text)
log_file.flush()
plot_train_loss.append(train_loss / config.running_config['train_steps'])
plot_dev_loss.append(dev_loss / config.running_config['dev_steps'])
plot_acc.append(test_acc)
plot_precision.append(precision)
ckpt_manager.save()
plt.plot(plot_train_loss, '-r', label='train_loss')
plt.title('Train Loss')
plt.xlabel('Epochs')
plt.savefig(dir_current + '/loss.png')
#plot dev
plt.clf()
plt.plot(plot_dev_loss, '-g', label='dev_loss')
plt.title('dev Loss')
plt.xlabel('Epochs')
plt.savefig(dir_current + '/dev_loss.png')
# plot acc curve
plt.clf()
plt.plot(plot_acc, 'b-', label='acc')
plt.title('Accuracy')
plt.xlabel('Epochs')
plt.savefig(dir_current + '/acc.png')
# plot f1 curve
plt.clf()
plt.plot(plot_precision, 'y-', label='f1-score')
plt.title('F1')
plt.xlabel('Epochs')
plt.savefig(dir_current + '/f1-score.png')
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Spoken_language_identification Model training")
parser.add_argument("--config_file", type=str, default='./configs/config.yml', help="Config File Path")
args = parser.parse_args()
kwargs = vars(args)
with mirrored_strategy.scope():
train(**kwargs) |