from signal import signal import tensorflow as tf gpus = tf.config.list_physical_devices('GPU') tf.config.set_visible_devices(gpus[0:1], 'GPU') from vocab.vocab import Vocab import librosa import numpy as np import sys import os from tqdm import tqdm from sklearn.metrics import accuracy_score vocab = Vocab("vocab/vocab.txt") model = tf.saved_model.load('saved_models/lang14/pb/2/') def predict_wav(wav_path): signal, _ = librosa.load(wav_path, sr=16000) output, prob = model.predict_pb(signal) language = vocab.token_list[output.numpy()] print(language, prob.numpy()*100) return output.numpy(), prob.numpy() if __name__ == '__main__': wav_path = sys.argv[1] predict_wav(wav_path)