Upload of PPO model of Lunar lander agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 283.34 +/- 15.54
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78c7c9c1ca60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78c7c9c1caf0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78c7c9c1cb80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78c7c9c1cc10>", "_build": "<function ActorCriticPolicy._build at 0x78c7c9c1cca0>", "forward": "<function ActorCriticPolicy.forward at 0x78c7c9c1cd30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78c7c9c1cdc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78c7c9c1ce50>", "_predict": "<function ActorCriticPolicy._predict at 0x78c7c9c1cee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78c7c9c1cf70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78c7c9c1d000>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78c7c9c1d090>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78c7ca55ce40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 4014080, "_total_timesteps": 4000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1715413656993240494, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqpMTwEhWQ+EzlQvudTzb6Hq4++C7rFPQAAAAAAAAAAZv7nvEKzsD/YBJG+iOKDvhcTCr2nCD6+AAAAAAAAAAAzM2S74bDcukWU4Dv2hbA8Wf7EO6ysl70AAIA/AACAP2aQgb3hkou6voyNOx3CEzjF3Ag70+bYtwAAAAAAAAAAZkqtPeF9uT/2Vo0+2Y6wvspYVz4CFcE9AAAAAAAAAACA80k9B7FnP4Ya5DyEv9m+CwPvPdqdZj0AAAAAAAAAAMBybD6TImo/Vg99vuMCAb+WIF8+zg2KvgAAAAAAAAAAzV7iPHg/xz0TyP+9qq+4vr7Yub3FR3+8AAAAAAAAAAAzS+079lR1um51DzrP6PC1GOScuU8nJ7kAAIA/AACAP5oRAT2ky1A+sq5Ivm3vyb6uCjy+ZdNgPQAAAAAAAAAAZnBHvPHlbz7Sh7U9qSjpvnbJoT3IhJM8AAAAAAAAAAAaEz0+1KWrP36ZwT5fkry+rfjoPk9Aiz4AAAAAAAAAAIAjZz0Qaqs+JQRMvr0ay74fGYg74VdEvgAAAAAAAAAAM1PTOwpDQ7uWzg48T3KRPIWrgTzqH3q9AACAPwAAgD8NRxE+U1aoPwZaFD/pGce+0YVOPvUC6D4AAAAAAAAAAADG2by4tKa7j7aBPmddPb7q/jW9/kOgvwAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMRTNdJJ5GMAWyUS+6MAXSUR0Cs0BZavA45dX2UKGgGR0Bya3Tb349HaAdLz2gIR0Cs0CXYL9dedX2UKGgGR0Byc3779AHFaAdL72gIR0Cs0DnKnvUjdX2UKGgGR0BzVo/NZ/0/aAdL1mgIR0Cs0KWtdRixdX2UKGgGR0Bx6Bjc2zfKaAdL12gIR0Cs0K5B1LamdX2UKGgGR0ByGQ5MlC1JaAdLyWgIR0Cs0NOoHcDbdX2UKGgGR0BxXCXlbNbDaAdL6WgIR0Cs0Oh/RVp9dX2UKGgGR0ByEdyzXz19aAdL4GgIR0Cs0b0jcEeRdX2UKGgGR0BxjftUn5SFaAdL6mgIR0Cs0hcDSw4bdX2UKGgGR0BzP1LoOhCdaAdL22gIR0Cs0ni7K7qZdX2UKGgGR0BvxMpqh11XaAdL1mgIR0Cs0u5GSZBtdX2UKGgGR0BzXMXN1QqJaAdLzGgIR0Cs00ZeiSJTdX2UKGgGR0Bws2u9vjwQaAdL0mgIR0Cs04+/gzgudX2UKGgGR0Bwgs/1QIldaAdL0GgIR0Cs06FhPTG6dX2UKGgGR0BybTiIcinpaAdL52gIR0Cs0+Q/X5FgdX2UKGgGR0BwRZ6mfoRqaAdLx2gIR0Cs1IqfFrEcdX2UKGgGR0ByDeVv/BFeaAdLxWgIR0Cs1JRFAmiQdX2UKGgGR0By8JB+nZTRaAdL6GgIR0Cs1S/lhgE2dX2UKGgGR0ByMhJCjUNKaAdLwWgIR0Cs1TZXEIgOdX2UKGgGR0Bxr1LrX18LaAdL5WgIR0Cs1VB9Tgl4dX2UKGgGR0ByD8LDye7MaAdL2WgIR0Cs1YAFxGUfdX2UKGgGR0BwBJAOavzOaAdLzWgIR0Cs1YhYmsvJdX2UKGgGR0BzssETxoZiaAdL1WgIR0Cs1poV/MGHdX2UKGgGR0BxyEy57PY4aAdLw2gIR0Cs1tQ4CIUKdX2UKGgGR0Bx7odBBzFNaAdLrWgIR0Cs1xXo9s7/dX2UKGgGR0Bx03Wf9P1taAdL5mgIR0Cs10WSEDhcdX2UKGgGR0BxUEJHAh0RaAdLy2gIR0Cs128do372dX2UKGgGR0BzNa4PPLPlaAdLvGgIR0Cs17uvMbFTdX2UKGgGR0BxjOc3EQ5FaAdLzWgIR0Cs2CnbAUL2dX2UKGgGR0Bwi1mg8KXwaAdL02gIR0Cs4facAimmdX2UKGgGR0BzMVKwpvxZaAdL3WgIR0Cs4nMXBP9DdX2UKGgGR0Bx/s+iaiK0aAdLu2gIR0Cs4oIY3vQXdX2UKGgGR0ByiWyyD7IlaAdL0GgIR0Cs4rtdiUgTdX2UKGgGR0BzCUQGwA2iaAdLymgIR0Cs4torOJLvdX2UKGgGR0ByoVbHIZIhaAdL/2gIR0Cs4vVafSQYdX2UKGgGR0BwQ6cLBsQ/aAdL2GgIR0Cs4xAggX/HdX2UKGgGR0ByJkXyiEg4aAdL9GgIR0Cs4zLVvuPWdX2UKGgGR0BxYNFSbYseaAdLwGgIR0Cs46dt2s7udX2UKGgGR0BxycaESM99aAdLy2gIR0Cs46cfeUILdX2UKGgGR0BxNd0T101ZaAdL3GgIR0Cs47hyCFsYdX2UKGgGR0BvZP9gnc+JaAdL2WgIR0Cs5CUh/y5JdX2UKGgGR0BxYXXHzYmLaAdL02gIR0Cs5EFHJ9y+dX2UKGgGR0BwnC/k/8l5aAdL0GgIR0Cs5HaNdZ7pdX2UKGgGR0B0J/Hp8neBaAdNAQFoCEdArOSWJgsshHV9lChoBkdAcIiTWGyooGgHS89oCEdArOS04Nqgy3V9lChoBkdAbmaKG+K0lmgHS89oCEdArOU0hHLA6HV9lChoBkdAcclC1Z1V52gHS7loCEdArOVU4o7V8XV9lChoBkdAc1nkupS75GgHS95oCEdArOVaoQ4CIXV9lChoBkdAcEQnJkoWpWgHS8toCEdArOV4V45cT3V9lChoBkdAcNpNUOuq3mgHS+FoCEdArOX4LZzxPXV9lChoBkdAccok078vVWgHS/poCEdArOX8R6F/QXV9lChoBkdAclzqhUR3/2gHS+ZoCEdArOYvNorWiHV9lChoBkdAcVDXqZ+hG2gHS8poCEdArOZPCdjG1nV9lChoBkdAcBvCMPz4DmgHS+BoCEdArOar/MnqmnV9lChoBkdAcoAnU2DQJGgHS+doCEdArOazEHdGiHV9lChoBkdAcMxSw4bS7WgHS8toCEdArObw5R0lq3V9lChoBkdAb0hewcHW0GgHS9JoCEdArObwhfShJ3V9lChoBkdAcJIaEBbOeWgHS8loCEdArOceqFRHgHV9lChoBkdAbeZb8m8dxWgHS9poCEdArOdxPqLS/nV9lChoBkdAcVQ9ZzPrwGgHS9poCEdArOeQYUFjeHV9lChoBkdAcoqKlHjIaWgHS71oCEdArOfWv8qFy3V9lChoBkdAclNeZ5Rj0GgHS8NoCEdArOfmirT6SHV9lChoBkdAchBdyksSTWgHS9NoCEdArOf/Fm4Aj3V9lChoBkdAcev4Qz1scmgHS9JoCEdArOhBW7voeXV9lChoBkdAce5ZZ0Syt2gHS8hoCEdArOiiaJAMUnV9lChoBkdAcwCGC7K7qmgHS9FoCEdArOjGp6yB1HV9lChoBkdAcq56Ae7tiWgHS+doCEdArOlAkmhM8HV9lChoBkdAb/BPJJXhfmgHS99oCEdArOlAwj+rEXV9lChoBkdAcL4mYjSofmgHS7poCEdArOlhzFMqSXV9lChoBkdAcUVIV/MGHGgHS9JoCEdArOlub7TDwnV9lChoBkdAcdYc81XNkmgHS9RoCEdArOntnuiN83V9lChoBkdAcpYuM+/xlWgHS/hoCEdArOo9SGahH3V9lChoBkdAcMMHlOoHcGgHS9doCEdArOpayGBWgnV9lChoBkdAcbTtNSIgvGgHS91oCEdArOqblV94NnV9lChoBkdAZW4rFOwgT2gHTegDaAhHQKzqm1a4c3l1fZQoaAZHQHGkvDcdo39oB0vRaAhHQKzqyH6dlNF1fZQoaAZHQHNM9mpVCHBoB0vWaAhHQKzqyolUp/h1fZQoaAZHQHEFHdO6/ZdoB0vKaAhHQKzq/0Yj0MB1fZQoaAZHQHDySGnGbTdoB0veaAhHQKzrA6Lfk3l1fZQoaAZHQHLt7haTwDxoB0vUaAhHQKzrcIznA7B1fZQoaAZHQHIkD37DVH5oB0v4aAhHQKzsDN/vv0B1fZQoaAZHQG5IiLMs6JZoB0vWaAhHQKzsF9w3o9t1fZQoaAZHQHNJNbkfcN9oB0vPaAhHQKzsI4/eLvV1fZQoaAZHQHEhyuU2UB5oB0vOaAhHQKzsL08vEjx1fZQoaAZHQHJ6dH+ZPVNoB0vnaAhHQKzsVs9jgAJ1fZQoaAZHQHFBT+BH09RoB0vTaAhHQKzsv0IToMd1fZQoaAZHQHEcX9R77bdoB0vQaAhHQKzs/2SMcZN1fZQoaAZHQHPo17dBSk1oB0veaAhHQKztSqe9SMt1fZQoaAZHQHHBeAAhje9oB0vSaAhHQKztVZdv8651fZQoaAZHQHMY4wM6RyRoB0vYaAhHQKztaaw2VFB1fZQoaAZHQHAXY77sOXpoB0vdaAhHQKztooegctJ1fZQoaAZHQHNyGu5jH4poB0vKaAhHQKztpNRm9QJ1fZQoaAZHQHOAPmDDjzZoB0vqaAhHQKztyXkYGdJ1fZQoaAZHQHMHurU9ZA9oB0vkaAhHQKzuAIiTt9h1fZQoaAZHQG3qczyjHn5oB0vVaAhHQKzuadQwbl11fZQoaAZHQHJunEQ5FPVoB0vQaAhHQKzvMiILw4N1fZQoaAZHQG+FXumaYu1oB0vPaAhHQKzvXNwBHTZ1fZQoaAZHQHFgu8TSLIhoB0vZaAhHQKzvbtBOYY11fZQoaAZHQG9MptSAH3VoB0vRaAhHQKzvmkAxSHd1fZQoaAZHQHFxCOearm1oB0vsaAhHQKzv1IuoP091ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 980, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dac4e9640f54f0254032b992416c28f5d5419fe7efaa49fcb381730b0579d5d5
|
3 |
+
size 147446
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x78c7c9c1ca60>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78c7c9c1caf0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78c7c9c1cb80>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78c7c9c1cc10>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x78c7c9c1cca0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x78c7c9c1cd30>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x78c7c9c1cdc0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78c7c9c1ce50>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x78c7c9c1cee0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78c7c9c1cf70>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78c7c9c1d000>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x78c7c9c1d090>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x78c7ca55ce40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 4014080,
|
25 |
+
"_total_timesteps": 4000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1715413656993240494,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqpMTwEhWQ+EzlQvudTzb6Hq4++C7rFPQAAAAAAAAAAZv7nvEKzsD/YBJG+iOKDvhcTCr2nCD6+AAAAAAAAAAAzM2S74bDcukWU4Dv2hbA8Wf7EO6ysl70AAIA/AACAP2aQgb3hkou6voyNOx3CEzjF3Ag70+bYtwAAAAAAAAAAZkqtPeF9uT/2Vo0+2Y6wvspYVz4CFcE9AAAAAAAAAACA80k9B7FnP4Ya5DyEv9m+CwPvPdqdZj0AAAAAAAAAAMBybD6TImo/Vg99vuMCAb+WIF8+zg2KvgAAAAAAAAAAzV7iPHg/xz0TyP+9qq+4vr7Yub3FR3+8AAAAAAAAAAAzS+079lR1um51DzrP6PC1GOScuU8nJ7kAAIA/AACAP5oRAT2ky1A+sq5Ivm3vyb6uCjy+ZdNgPQAAAAAAAAAAZnBHvPHlbz7Sh7U9qSjpvnbJoT3IhJM8AAAAAAAAAAAaEz0+1KWrP36ZwT5fkry+rfjoPk9Aiz4AAAAAAAAAAIAjZz0Qaqs+JQRMvr0ay74fGYg74VdEvgAAAAAAAAAAM1PTOwpDQ7uWzg48T3KRPIWrgTzqH3q9AACAPwAAgD8NRxE+U1aoPwZaFD/pGce+0YVOPvUC6D4AAAAAAAAAAADG2by4tKa7j7aBPmddPb7q/jW9/kOgvwAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.0035199999999999676,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMRTNdJJ5GMAWyUS+6MAXSUR0Cs0BZavA45dX2UKGgGR0Bya3Tb349HaAdLz2gIR0Cs0CXYL9dedX2UKGgGR0Byc3779AHFaAdL72gIR0Cs0DnKnvUjdX2UKGgGR0BzVo/NZ/0/aAdL1mgIR0Cs0KWtdRixdX2UKGgGR0Bx6Bjc2zfKaAdL12gIR0Cs0K5B1LamdX2UKGgGR0ByGQ5MlC1JaAdLyWgIR0Cs0NOoHcDbdX2UKGgGR0BxXCXlbNbDaAdL6WgIR0Cs0Oh/RVp9dX2UKGgGR0ByEdyzXz19aAdL4GgIR0Cs0b0jcEeRdX2UKGgGR0BxjftUn5SFaAdL6mgIR0Cs0hcDSw4bdX2UKGgGR0BzP1LoOhCdaAdL22gIR0Cs0ni7K7qZdX2UKGgGR0BvxMpqh11XaAdL1mgIR0Cs0u5GSZBtdX2UKGgGR0BzXMXN1QqJaAdLzGgIR0Cs00ZeiSJTdX2UKGgGR0Bws2u9vjwQaAdL0mgIR0Cs04+/gzgudX2UKGgGR0Bwgs/1QIldaAdL0GgIR0Cs06FhPTG6dX2UKGgGR0BybTiIcinpaAdL52gIR0Cs0+Q/X5FgdX2UKGgGR0BwRZ6mfoRqaAdLx2gIR0Cs1IqfFrEcdX2UKGgGR0ByDeVv/BFeaAdLxWgIR0Cs1JRFAmiQdX2UKGgGR0By8JB+nZTRaAdL6GgIR0Cs1S/lhgE2dX2UKGgGR0ByMhJCjUNKaAdLwWgIR0Cs1TZXEIgOdX2UKGgGR0Bxr1LrX18LaAdL5WgIR0Cs1VB9Tgl4dX2UKGgGR0ByD8LDye7MaAdL2WgIR0Cs1YAFxGUfdX2UKGgGR0BwBJAOavzOaAdLzWgIR0Cs1YhYmsvJdX2UKGgGR0BzssETxoZiaAdL1WgIR0Cs1poV/MGHdX2UKGgGR0BxyEy57PY4aAdLw2gIR0Cs1tQ4CIUKdX2UKGgGR0Bx7odBBzFNaAdLrWgIR0Cs1xXo9s7/dX2UKGgGR0Bx03Wf9P1taAdL5mgIR0Cs10WSEDhcdX2UKGgGR0BxUEJHAh0RaAdLy2gIR0Cs128do372dX2UKGgGR0BzNa4PPLPlaAdLvGgIR0Cs17uvMbFTdX2UKGgGR0BxjOc3EQ5FaAdLzWgIR0Cs2CnbAUL2dX2UKGgGR0Bwi1mg8KXwaAdL02gIR0Cs4facAimmdX2UKGgGR0BzMVKwpvxZaAdL3WgIR0Cs4nMXBP9DdX2UKGgGR0Bx/s+iaiK0aAdLu2gIR0Cs4oIY3vQXdX2UKGgGR0ByiWyyD7IlaAdL0GgIR0Cs4rtdiUgTdX2UKGgGR0BzCUQGwA2iaAdLymgIR0Cs4torOJLvdX2UKGgGR0ByoVbHIZIhaAdL/2gIR0Cs4vVafSQYdX2UKGgGR0BwQ6cLBsQ/aAdL2GgIR0Cs4xAggX/HdX2UKGgGR0ByJkXyiEg4aAdL9GgIR0Cs4zLVvuPWdX2UKGgGR0BxYNFSbYseaAdLwGgIR0Cs46dt2s7udX2UKGgGR0BxycaESM99aAdLy2gIR0Cs46cfeUILdX2UKGgGR0BxNd0T101ZaAdL3GgIR0Cs47hyCFsYdX2UKGgGR0BvZP9gnc+JaAdL2WgIR0Cs5CUh/y5JdX2UKGgGR0BxYXXHzYmLaAdL02gIR0Cs5EFHJ9y+dX2UKGgGR0BwnC/k/8l5aAdL0GgIR0Cs5HaNdZ7pdX2UKGgGR0B0J/Hp8neBaAdNAQFoCEdArOSWJgsshHV9lChoBkdAcIiTWGyooGgHS89oCEdArOS04Nqgy3V9lChoBkdAbmaKG+K0lmgHS89oCEdArOU0hHLA6HV9lChoBkdAcclC1Z1V52gHS7loCEdArOVU4o7V8XV9lChoBkdAc1nkupS75GgHS95oCEdArOVaoQ4CIXV9lChoBkdAcEQnJkoWpWgHS8toCEdArOV4V45cT3V9lChoBkdAcNpNUOuq3mgHS+FoCEdArOX4LZzxPXV9lChoBkdAccok078vVWgHS/poCEdArOX8R6F/QXV9lChoBkdAclzqhUR3/2gHS+ZoCEdArOYvNorWiHV9lChoBkdAcVDXqZ+hG2gHS8poCEdArOZPCdjG1nV9lChoBkdAcBvCMPz4DmgHS+BoCEdArOar/MnqmnV9lChoBkdAcoAnU2DQJGgHS+doCEdArOazEHdGiHV9lChoBkdAcMxSw4bS7WgHS8toCEdArObw5R0lq3V9lChoBkdAb0hewcHW0GgHS9JoCEdArObwhfShJ3V9lChoBkdAcJIaEBbOeWgHS8loCEdArOceqFRHgHV9lChoBkdAbeZb8m8dxWgHS9poCEdArOdxPqLS/nV9lChoBkdAcVQ9ZzPrwGgHS9poCEdArOeQYUFjeHV9lChoBkdAcoqKlHjIaWgHS71oCEdArOfWv8qFy3V9lChoBkdAclNeZ5Rj0GgHS8NoCEdArOfmirT6SHV9lChoBkdAchBdyksSTWgHS9NoCEdArOf/Fm4Aj3V9lChoBkdAcev4Qz1scmgHS9JoCEdArOhBW7voeXV9lChoBkdAce5ZZ0Syt2gHS8hoCEdArOiiaJAMUnV9lChoBkdAcwCGC7K7qmgHS9FoCEdArOjGp6yB1HV9lChoBkdAcq56Ae7tiWgHS+doCEdArOlAkmhM8HV9lChoBkdAb/BPJJXhfmgHS99oCEdArOlAwj+rEXV9lChoBkdAcL4mYjSofmgHS7poCEdArOlhzFMqSXV9lChoBkdAcUVIV/MGHGgHS9JoCEdArOlub7TDwnV9lChoBkdAcdYc81XNkmgHS9RoCEdArOntnuiN83V9lChoBkdAcpYuM+/xlWgHS/hoCEdArOo9SGahH3V9lChoBkdAcMMHlOoHcGgHS9doCEdArOpayGBWgnV9lChoBkdAcbTtNSIgvGgHS91oCEdArOqblV94NnV9lChoBkdAZW4rFOwgT2gHTegDaAhHQKzqm1a4c3l1fZQoaAZHQHGkvDcdo39oB0vRaAhHQKzqyH6dlNF1fZQoaAZHQHNM9mpVCHBoB0vWaAhHQKzqyolUp/h1fZQoaAZHQHEFHdO6/ZdoB0vKaAhHQKzq/0Yj0MB1fZQoaAZHQHDySGnGbTdoB0veaAhHQKzrA6Lfk3l1fZQoaAZHQHLt7haTwDxoB0vUaAhHQKzrcIznA7B1fZQoaAZHQHIkD37DVH5oB0v4aAhHQKzsDN/vv0B1fZQoaAZHQG5IiLMs6JZoB0vWaAhHQKzsF9w3o9t1fZQoaAZHQHNJNbkfcN9oB0vPaAhHQKzsI4/eLvV1fZQoaAZHQHEhyuU2UB5oB0vOaAhHQKzsL08vEjx1fZQoaAZHQHJ6dH+ZPVNoB0vnaAhHQKzsVs9jgAJ1fZQoaAZHQHFBT+BH09RoB0vTaAhHQKzsv0IToMd1fZQoaAZHQHEcX9R77bdoB0vQaAhHQKzs/2SMcZN1fZQoaAZHQHPo17dBSk1oB0veaAhHQKztSqe9SMt1fZQoaAZHQHHBeAAhje9oB0vSaAhHQKztVZdv8651fZQoaAZHQHMY4wM6RyRoB0vYaAhHQKztaaw2VFB1fZQoaAZHQHAXY77sOXpoB0vdaAhHQKztooegctJ1fZQoaAZHQHNyGu5jH4poB0vKaAhHQKztpNRm9QJ1fZQoaAZHQHOAPmDDjzZoB0vqaAhHQKztyXkYGdJ1fZQoaAZHQHMHurU9ZA9oB0vkaAhHQKzuAIiTt9h1fZQoaAZHQG3qczyjHn5oB0vVaAhHQKzuadQwbl11fZQoaAZHQHJunEQ5FPVoB0vQaAhHQKzvMiILw4N1fZQoaAZHQG+FXumaYu1oB0vPaAhHQKzvXNwBHTZ1fZQoaAZHQHFgu8TSLIhoB0vZaAhHQKzvbtBOYY11fZQoaAZHQG9MptSAH3VoB0vRaAhHQKzvmkAxSHd1fZQoaAZHQHFxCOearm1oB0vsaAhHQKzv1IuoP091ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 980,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:66acfe6181e2b844407c9cec9c89d0d26ab0bc56f123e5dea939b2f3bd0a71b7
|
3 |
+
size 87978
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:993a2bdf3e8957ff63d8bf671cccf03ca37cf9cee0a4d9633a44b2ff4bbbd03b
|
3 |
+
size 43634
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.2.1+cu121
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (154 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 283.3443765, "std_reward": 15.539183771140998, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-05-11T10:28:04.684383"}
|