File size: 2,774 Bytes
b6b3e4c
 
 
 
 
 
 
 
 
 
83dcdde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6b3e4c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
datasets:
- TIGER-Lab/MathInstruct
base_model:
- meta-llama/Llama-3.2-3B-Instruct
tags:
- lora
- adapters
- llama
---

# **LLAMA-3.2-3B-MathInstruct_LORA_SFT**

This model is a fine-tuned version of [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) on the [MathInstruct](https://huggingface.co/datasets/TIGER-Lab/MathInstruct) dataset. The fine-tuning process was designed to enhance the model's performance for mathematical instruction-following tasks, ensuring improved accuracy and precision when solving math-related problems.

It achieves the following results on the evaluation set:
- **Loss**: 0.6895  

---

## **Model Description**

This model is specifically fine-tuned for mathematical reasoning, problem-solving, and instruction-following tasks. Leveraging the LLaMA-3.2-3B-Instruct base model, it has been optimized to handle mathematical queries and tasks with improved efficiency and context understanding.  

---

## **Training and Evaluation Data**

The model was fine-tuned on the [MathInstruct](https://huggingface.co/datasets/TIGER-Lab/MathInstruct) dataset.  
- **Dataset Source**: TIGER-Lab.  
- **Dataset Focus**: Mathematical instruction-following and reasoning tasks.  
- **Scope**: A wide range of math topics, including arithmetic, algebra, calculus, and problem-solving.  

The dataset was carefully curated to align with instructional objectives for solving mathematical problems and understanding step-by-step reasoning.

---

## **Training Procedure**

### **Hyperparameters**
- **Learning rate**: 0.0001  
- **Train batch size**: 1  
- **Eval batch size**: 1  
- **Gradient accumulation steps**: 8  
- **Total effective batch size**: 8  
- **Optimizer**: AdamW (torch)  
  - **Betas**: (0.9, 0.999)  
  - **Epsilon**: 1e-08  
- **Learning rate scheduler**: Cosine schedule with 10% warmup.  
- **Number of epochs**: 3.0  

### **Framework Versions**
- **PEFT**: 0.12.0  
- **Transformers**: 4.46.1  
- **PyTorch**: 2.5.1+cu124  
- **Datasets**: 3.1.0  
- **Tokenizers**: 0.20.3  

---

## **Training Results**

- **Loss**: 0.6895  
- Evaluation indicates strong performance on math instruction-following tasks. Further testing on specific use cases is recommended to assess the model’s generalizability.

---

## **Additional Information**

- **Author**: Sri Santh M  
- **Purpose**: Fine-tuned for educational and development purposes, particularly for math-related tasks.  
- **Dataset Link**: [MathInstruct Dataset](https://huggingface.co/datasets/TIGER-Lab/MathInstruct)  

This model represents a focused effort to adapt the LLaMA-3.2-3B-Instruct model for specialized mathematical use cases. It can be further fine-tuned or extended for more specific mathematical domains or applications.