--- license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-sample_kine results: [] --- # videomae-base-finetuned-sample_kine This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5079 - Accuracy: 0.8205 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 140 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.7564 | 0.1071 | 15 | 0.6660 | 0.6923 | | 0.6614 | 1.1071 | 30 | 0.5677 | 0.6923 | | 0.5941 | 2.1071 | 45 | 0.5079 | 0.8205 | | 0.3661 | 3.1071 | 60 | 0.6175 | 0.6923 | | 0.3258 | 4.1071 | 75 | 1.1649 | 0.7436 | | 0.5887 | 5.1071 | 90 | 0.4697 | 0.7179 | | 0.3907 | 6.1071 | 105 | 0.9874 | 0.6154 | | 0.1948 | 7.1071 | 120 | 0.9959 | 0.6667 | | 0.1424 | 8.1071 | 135 | 1.1357 | 0.6667 | | 0.2198 | 9.0357 | 140 | 1.1467 | 0.6667 | ### Framework versions - Transformers 4.43.4 - Pytorch 2.4.1 - Datasets 2.20.0 - Tokenizers 0.19.1