StandardCAS-NSTID's picture
Rename 1c3a.py to In Progress/1c3a.py
20afd3a verified
#Added Retrain all clusters or only from new folder options
import os
import cv2
import numpy as np
from sklearn.cluster import KMeans
from tensorflow.keras.models import load_model
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from joblib import dump, load
from sklearn.cluster import KMeans
from keras.models import Sequential
from keras.layers import Dense, Conv2D, MaxPooling2D, Flatten
import tensorflow as tf
# Define desired image size
img_size = (1000, 1000)
def load_images_from_folder(folder):
"""
Load and resize images from the specified folder.
:param folder: The path to the folder containing the images to load.
:return: A tuple containing a list of loaded and resized images and a list of their corresponding file paths.
"""
images = []
image_paths = []
for filename in os.listdir(folder):
file_path = os.path.join(folder, filename)
if os.path.isdir(file_path):
subfolder_images, subfolder_image_paths = load_images_from_folder(file_path)
images.extend(subfolder_images)
image_paths.extend(subfolder_image_paths)
elif filename.endswith(('.png', '.jpg', '.jpeg')):
img = cv2.imread(file_path, 0)
img = cv2.resize(img, img_size)
images.append(img)
image_paths.append(file_path)
return images, image_paths
def train_model(folder, model_file):
"""
Train a model for the specified folder and save it to the specified file.
:param folder: The path to the folder containing the training data.
:param model_file: The path to the file where the trained model will be saved.
"""
# Load and resize training data
images, image_paths = load_images_from_folder(folder)
images = np.array(images, dtype=object)
# Check if there are enough images
if len(images) > 0:
# Normalize pixel values
images = images.astype('float32') / 255.0
# Create CNN model
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(img_size[0], img_size[1], 1)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(Flatten())
model.add(Dense(64, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# Compile CNN model using SGD optimizer from tf.keras.optimizers.legacy
opt = tf.keras.optimizers.legacy.SGD()
model.compile(optimizer=opt, loss='binary_crossentropy', metrics=['accuracy'])
# Convert images array to float32
images = images.astype(np.float32)
# Train CNN model
try:
history = model.fit(images.reshape(len(images), img_size[0], img_size[1], 1), np.ones(len(images)), epochs=2, batch_size=150)
# Save trained model to file
print(model_file, 'here')
model.save(model_file)
except Exception as e:
print(e)
def classify_images(folder, model_folder, n_clusters=5, new_only=False):
"""
Classify images in the specified folder using the specified model and a k-means algorithm.
:param folder: The path to the folder containing the images to classify.
:param model_folder: The path to the folder containing the trained model.
:param n_clusters: The number of clusters to form using the k-means algorithm.
:param new_only: Whether to classify only images in a subfolder named "new".
:return: A 2D list of image file paths, where each inner list corresponds to a cluster and contains the file paths of the images assigned to that cluster.
"""
# Load trained model from file
model_file = os.path.join(folder, os.path.basename(folder) + '.h5')
model = load_model(model_file)
# Load and resize images from specified folder
if new_only:
folder = os.path.join(folder, 'new')
images, image_paths = load_images_from_folder(folder)
images = np.array(images, dtype=object)
# Normalize pixel values
images = images.astype('float32') / 255.0
# Obtain classification scores for each image
scores = model.predict(images.reshape(len(images), img_size[0], img_size[1], 1), batch_size=200)
# Use k-means algorithm to cluster images based on their classification scores
if len(scores) >= n_clusters:
kmeans = KMeans(n_clusters=n_clusters, n_init=20)
kmeans.fit(scores)
# Create 2D list of image file paths, where each inner list corresponds to a cluster
clusters = [[] for _ in range(n_clusters)]
for i, label in enumerate(kmeans.labels_):
clusters[label].append(image_paths[i])
else:
clusters = [image_paths]
# Return 2D list of image file paths
return clusters
def remove_empty_folders_recursively(directory):
"""
Remove and delete empty folders in the specified directory and all of its subdirectories.
:param directory: The path to the directory to remove empty folders from.
"""
for folder in os.listdir(directory):
folder_path = os.path.join(directory, folder)
if os.path.isdir(folder_path):
# Recursively remove empty subfolders
remove_empty_folders_recursively(folder_path)
# Remove folder if it is empty
if not os.listdir(folder_path):
os.rmdir(folder_path)
def train_model_recursively(folder, model_folder, max_depth=None, depth=0):
"""
Train a model for the specified folder and its subdirectories and save it to the specified file.
:param folder: The path to the folder containing the training data.
:param model_folder: The path to the folder where the trained models will be saved.
:param max_depth: The maximum depth of recursion. If None, recursion will continue until all subdirectories have been processed.
:param depth: The current depth of recursion.
"""
# Train model for current folder
model_file = os.path.join(model_folder, os.path.basename(folder) + '.h5')
train_model(folder, model_file)
# Recursively train models for subdirectories
if max_depth is None or depth < max_depth:
for subfolder in os.listdir(folder):
subfolder_path = os.path.join(folder, subfolder)
if os.path.isdir(subfolder_path):
model_folder = subfolder_path
print(model_folder,subfolder_path)
#print(subfolder_path,folder,subfolder,model_folder)
train_model_recursively(subfolder_path, model_folder, max_depth, depth + 1)
def classify_images_recursively(folder, model_folder, n_clusters=5, max_depth=None, depth=0):
"""
Classify images in the specified folder and its subdirectories using the specified model and a k-means algorithm.
:param folder: The path to the folder containing the images to classify.
:param model_folder: The path to the folder containing the trained models.
:param n_clusters: The number of clusters to form using the k-means algorithm.
:param max_depth: The maximum depth of recursion. If None, recursion will continue until all subdirectories have been processed.
:param depth: The current depth of recursion.
:return: A dictionary where the keys are folder paths and the values are 2D lists of image file paths, where each inner list corresponds to a cluster and contains the file paths of the images assigned to that cluster.
"""
# Classify images in current folder
clusters = classify_images(folder, model_folder, n_clusters)
result = {folder: clusters}
# Recursively classify images in subdirectories
if max_depth is None or depth < max_depth:
for subfolder in os.listdir(folder):
subfolder_path = os.path.join(folder, subfolder)
if os.path.isdir(subfolder_path):
result.update(classify_images_recursively(subfolder_path, model_folder, n_clusters, max_depth, depth + 1))
# Return result
return result
def main():
# Train models for textcv and buttoncv folders and their subdirectories
train_model_recursively('textcv', 'textcv')
train_model_recursively('buttoncv', 'buttoncv')
# Check for and remove empty subfolders
remove_empty_folders_recursively('textcv')
remove_empty_folders_recursively('buttoncv')
# Classify images in textcv and buttoncv folders and their subdirectories
text_clusters = classify_images_recursively('textcv', 'models')
button_clusters = classify_images_recursively('buttoncv', 'models')
try:
# Move images in textcv clusters to new folders
for folder, clusters in text_clusters.items():
for i, cluster in enumerate(clusters):
cluster_folder = os.path.join(folder, f'cluster_{i}')
os.makedirs(cluster_folder, exist_ok=True)
for image_path in cluster:
new_image_path = os.path.join(cluster_folder, os.path.basename(image_path))
os.rename(image_path, new_image_path)
except Exception as e:
print(e)
try:
# Move images in buttoncv clusters to new folders
for folder, clusters in button_clusters.items():
for i, cluster in enumerate(clusters):
cluster_folder = os.path.join(folder, f'cluster_{i}')
os.makedirs(cluster_folder, exist_ok=True)
for image_path in cluster:
new_image_path = os.path.join(cluster_folder, os.path.basename(image_path))
os.rename(image_path, new_image_path)
except Exception as e:
print(e)
if __name__ == '__main__':
main()