|
import json |
|
from functools import lru_cache |
|
from typing import TYPE_CHECKING |
|
|
|
import regex as re |
|
from transformers.tokenization_utils_base import TextInput |
|
from transformers.utils import is_tf_available, is_torch_available, to_py_obj |
|
|
|
if TYPE_CHECKING: |
|
if is_torch_available(): |
|
import torch |
|
if is_tf_available(): |
|
import tensorflow as tf |
|
|
|
import os |
|
import random |
|
from typing import Dict, List, Tuple, Union, Any, Callable, Optional |
|
|
|
import matplotlib as mpl |
|
import matplotlib.colors as mcolors |
|
import matplotlib.colors as mplc |
|
import matplotlib.figure as mplfigure |
|
import numpy as np |
|
import requests |
|
import torch |
|
from PIL import Image |
|
from matplotlib.backends.backend_agg import FigureCanvasAgg |
|
from transformers import PreTrainedTokenizer, AddedToken |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
VOCAB_FILES_NAMES = { |
|
"vocab_file": "vocab.json", |
|
"merges_file": "merges.txt", |
|
} |
|
|
|
PRETRAINED_VOCAB_FILES_MAP = { |
|
"vocab_file": { |
|
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", |
|
}, |
|
"merges_file": { |
|
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", |
|
}, |
|
} |
|
|
|
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { |
|
"Salesforce/codegen-350M-mono": 2048, |
|
} |
|
|
|
IMG_TOKEN_SPAN = 1024 |
|
|
|
DEFAULT_CHAT_TEMPLATE = "{% for message in messages %}\n{% if message['from'] == 'human' %}\n{{ '<|user|>\n' + message['value'] + eos_token }}\n{% elif message['from'] == 'system' %}\n{{ '<|system|>\n' + message['value'] + eos_token }}\n{% elif message['from'] == 'gpt' %}\n{{ '<|assistant|>\n' + message['value'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}" |
|
|
|
|
|
@lru_cache() |
|
def bytes_to_unicode(): |
|
""" |
|
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control |
|
characters the bpe code barfs on. |
|
|
|
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab |
|
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for |
|
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup |
|
tables between utf-8 bytes and unicode strings. |
|
""" |
|
bs = ( |
|
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list( |
|
range(ord("®"), ord("ÿ") + 1)) |
|
) |
|
cs = bs[:] |
|
n = 0 |
|
for b in range(2 ** 8): |
|
if b not in bs: |
|
bs.append(b) |
|
cs.append(2 ** 8 + n) |
|
n += 1 |
|
cs = [chr(n) for n in cs] |
|
return dict(zip(bs, cs)) |
|
|
|
|
|
def get_pairs(word): |
|
""" |
|
Return set of symbol pairs in a word. |
|
|
|
Word is represented as tuple of symbols (symbols being variable-length strings). |
|
""" |
|
pairs = set() |
|
prev_char = word[0] |
|
for char in word[1:]: |
|
pairs.add((prev_char, char)) |
|
prev_char = char |
|
return pairs |
|
|
|
|
|
def _list_find( |
|
input_list: List[Any], |
|
candidates: Tuple[Any], |
|
start: int = 0, |
|
): |
|
for i in range(start, len(input_list)): |
|
if input_list[i] in candidates: |
|
return i |
|
return -1 |
|
|
|
|
|
def _replace_closed_tag( |
|
input_tokens: List[Any], |
|
start_tags: Union[Any, Tuple[Any]], |
|
end_tags: Union[Any, Tuple[Any]], |
|
inclusive_replace_func: Callable, |
|
exclusive_replace_func: Callable = lambda x: x, |
|
): |
|
if isinstance(start_tags, (str, int)): |
|
start_tags = (start_tags,) |
|
if isinstance(end_tags, (str, int)): |
|
end_tags = (end_tags,) |
|
assert len(start_tags) == len(end_tags) |
|
|
|
output_tokens = [] |
|
end = 0 |
|
while True: |
|
start = _list_find(input_tokens, start_tags, end) |
|
if start == -1: |
|
break |
|
output_tokens.extend(exclusive_replace_func(input_tokens[end: start])) |
|
tag_idx = start_tags.index(input_tokens[start]) |
|
end = _list_find(input_tokens, (end_tags[tag_idx],), start) |
|
if end == -1: |
|
raise ValueError("Unclosed image token") |
|
output_tokens.extend(inclusive_replace_func(input_tokens[start: end + 1])) |
|
end += 1 |
|
output_tokens.extend(exclusive_replace_func(input_tokens[end:])) |
|
return output_tokens |
|
|
|
|
|
class CheXagentTokenizer(PreTrainedTokenizer): |
|
vocab_files_names = VOCAB_FILES_NAMES |
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP |
|
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES |
|
model_input_names = ["input_ids", "attention_mask"] |
|
|
|
def __init__( |
|
self, |
|
vocab_file, |
|
merges_file, |
|
errors="replace", |
|
unk_token="<|endoftext|>", |
|
bos_token="<|endoftext|>", |
|
eos_token="<|endoftext|>", |
|
pad_token=None, |
|
add_prefix_space=False, |
|
add_bos_token=False, |
|
image_start_tag='<|img|>', |
|
image_end_tag='<|/img|>', |
|
image_pad_tag='<|imgpad|>', |
|
ref_start_tag='<|ref|>', |
|
ref_end_tag='<|/ref|>', |
|
box_start_tag='<|box|>', |
|
box_end_tag='<|/box|>', |
|
quad_start_tag='<|quad|>', |
|
quad_end_tag='<|/quad|>', |
|
**kwargs, |
|
): |
|
bos_token = AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token |
|
eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token |
|
unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token |
|
pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token |
|
self.add_bos_token = add_bos_token |
|
|
|
with open(vocab_file, encoding="utf-8") as vocab_handle: |
|
self.encoder = json.load(vocab_handle) |
|
self.decoder = {v: k for k, v in self.encoder.items()} |
|
self.errors = errors |
|
self.byte_encoder = bytes_to_unicode() |
|
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} |
|
with open(merges_file, encoding="utf-8") as merges_handle: |
|
bpe_merges = merges_handle.read().split("\n")[1:-1] |
|
bpe_merges = [tuple(merge.split()) for merge in bpe_merges] |
|
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) |
|
self.cache = {} |
|
self.add_prefix_space = add_prefix_space |
|
|
|
|
|
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") |
|
super().__init__( |
|
errors=errors, |
|
unk_token=unk_token, |
|
bos_token=bos_token, |
|
eos_token=eos_token, |
|
pad_token=pad_token, |
|
add_prefix_space=add_prefix_space, |
|
add_bos_token=add_bos_token, |
|
**kwargs, |
|
) |
|
|
|
self.image_start_tag = image_start_tag |
|
self.image_end_tag = image_end_tag |
|
self.image_pad_tag = image_pad_tag |
|
self.ref_start_tag = ref_start_tag |
|
self.ref_end_tag = ref_end_tag |
|
self.box_start_tag = box_start_tag |
|
self.box_end_tag = box_end_tag |
|
self.quad_start_tag = quad_start_tag |
|
self.quad_end_tag = quad_end_tag |
|
self.IMAGE_ST = ( |
|
image_start_tag, image_end_tag, image_pad_tag, |
|
ref_start_tag, ref_end_tag, box_start_tag, box_end_tag, |
|
quad_start_tag, quad_end_tag, |
|
) |
|
for special_token in self.IMAGE_ST: |
|
if special_token not in self.get_vocab(): |
|
self.add_special_tokens({"additional_special_tokens": [special_token]}) |
|
for coordinate in range(10): |
|
if f"<{coordinate}>" not in self.get_vocab(): |
|
self.add_special_tokens({"additional_special_tokens": [f"<|coord_{coordinate}|>"]}) |
|
if len(self) % 64 != 0: |
|
for extra in range(((len(self) // 64) + 1) * 64 - len(self)): |
|
if f"<extra_{extra}>" not in self.get_vocab(): |
|
self.add_special_tokens({"additional_special_tokens": [f"<|extra_{extra}|>"]}) |
|
self.img_start_id = self.convert_tokens_to_ids(self.image_start_tag) |
|
self.img_end_id = self.convert_tokens_to_ids(self.image_end_tag) |
|
self.img_pad_id = self.convert_tokens_to_ids(self.image_pad_tag) |
|
self.ref_start_id = self.convert_tokens_to_ids(self.ref_start_tag) |
|
self.ref_end_id = self.convert_tokens_to_ids(self.ref_end_tag) |
|
self.box_start_id = self.convert_tokens_to_ids(self.box_start_tag) |
|
self.box_end_id = self.convert_tokens_to_ids(self.box_end_tag) |
|
self.quad_start_id = self.convert_tokens_to_ids(self.quad_start_tag) |
|
self.quad_end_id = self.convert_tokens_to_ids(self.quad_end_tag) |
|
self.chat_template = DEFAULT_CHAT_TEMPLATE |
|
|
|
@property |
|
def vocab_size(self): |
|
return len(self.encoder) |
|
|
|
def get_vocab(self): |
|
return dict(self.encoder, **self.added_tokens_encoder) |
|
|
|
def bpe(self, token): |
|
if token in self.cache: |
|
return self.cache[token] |
|
word = tuple(token) |
|
pairs = get_pairs(word) |
|
|
|
if not pairs: |
|
return token |
|
|
|
while True: |
|
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) |
|
if bigram not in self.bpe_ranks: |
|
break |
|
first, second = bigram |
|
new_word = [] |
|
i = 0 |
|
while i < len(word): |
|
try: |
|
j = word.index(first, i) |
|
except ValueError: |
|
new_word.extend(word[i:]) |
|
break |
|
else: |
|
new_word.extend(word[i:j]) |
|
i = j |
|
|
|
if word[i] == first and i < len(word) - 1 and word[i + 1] == second: |
|
new_word.append(first + second) |
|
i += 2 |
|
else: |
|
new_word.append(word[i]) |
|
i += 1 |
|
new_word = tuple(new_word) |
|
word = new_word |
|
if len(word) == 1: |
|
break |
|
else: |
|
pairs = get_pairs(word) |
|
word = " ".join(word) |
|
self.cache[token] = word |
|
return word |
|
|
|
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): |
|
if self.add_bos_token: |
|
bos_token_ids = [self.bos_token_id] |
|
else: |
|
bos_token_ids = [] |
|
|
|
output = bos_token_ids + token_ids_0 |
|
|
|
if token_ids_1 is None: |
|
return output |
|
|
|
return output + bos_token_ids + token_ids_1 |
|
|
|
def tokenize(self, text: TextInput, **kwargs) -> List[str]: |
|
def _encode_imgurl(img_tokens): |
|
assert img_tokens[0] == self.image_start_tag and img_tokens[-1] == self.image_end_tag |
|
img_tokens = img_tokens[1:-1] |
|
img_url = ''.join(img_tokens) |
|
out_img_tokens = list(img_url) |
|
if len(out_img_tokens) > IMG_TOKEN_SPAN: |
|
raise ValueError("The content in {}..{} is too long".format(self.image_start_tag, self.image_end_tag)) |
|
out_img_tokens.extend([self.image_pad_tag] * (IMG_TOKEN_SPAN - len(out_img_tokens))) |
|
out_img_tokens = [self.image_start_tag] + out_img_tokens + [self.image_end_tag] |
|
return out_img_tokens |
|
|
|
tokens = super().tokenize(text, **kwargs) |
|
tokens = _replace_closed_tag(tokens, self.image_start_tag, self.image_end_tag, _encode_imgurl) |
|
return tokens |
|
|
|
def _tokenize(self, text): |
|
"""Tokenize a string.""" |
|
|
|
bpe_tokens = [] |
|
for token in re.findall(self.pat, text): |
|
token = "".join( |
|
self.byte_encoder[b] for b in token.encode("utf-8") |
|
) |
|
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) |
|
return bpe_tokens |
|
|
|
def _convert_token_to_id(self, token): |
|
"""Converts a token (str) in an id using the vocab.""" |
|
return self.encoder.get(token, self.encoder.get(self.unk_token)) |
|
|
|
def _convert_id_to_token(self, index): |
|
"""Converts an index (integer) in a token (str) using the vocab.""" |
|
return self.decoder.get(index) |
|
|
|
def convert_tokens_to_string(self, tokens): |
|
"""Converts a sequence of tokens (string) in a single string.""" |
|
text = "".join(tokens) |
|
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) |
|
return text |
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
if not os.path.isdir(save_directory): |
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory") |
|
return |
|
vocab_file = os.path.join( |
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] |
|
) |
|
merge_file = os.path.join( |
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] |
|
) |
|
|
|
with open(vocab_file, "w", encoding="utf-8") as f: |
|
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") |
|
|
|
index = 0 |
|
with open(merge_file, "w", encoding="utf-8") as writer: |
|
writer.write("#version: 0.2\n") |
|
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): |
|
if index != token_index: |
|
logger.warning( |
|
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." |
|
" Please check that the tokenizer is not corrupted!" |
|
) |
|
index = token_index |
|
writer.write(" ".join(bpe_tokens) + "\n") |
|
index += 1 |
|
|
|
return vocab_file, merge_file |
|
|
|
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): |
|
add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) |
|
if is_split_into_words or add_prefix_space: |
|
text = " " + text |
|
return (text, kwargs) |
|
|
|
def decode( |
|
self, |
|
token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"], |
|
skip_special_tokens: bool = False, |
|
clean_up_tokenization_spaces: bool = None, |
|
truncate_before_pattern: Optional[List[str]] = None, |
|
**kwargs, |
|
) -> str: |
|
""" |
|
Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special |
|
tokens and clean up tokenization spaces. |
|
|
|
Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`. |
|
|
|
Args: |
|
token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): |
|
List of tokenized input ids. Can be obtained using the `__call__` method. |
|
skip_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not to remove special tokens in the decoding. |
|
clean_up_tokenization_spaces (`bool`, *optional*): |
|
Whether or not to clean up the tokenization spaces. If `None`, will default to |
|
`self.clean_up_tokenization_spaces` (available in the `tokenizer_config`). |
|
truncate_before_pattern (`List[str]`, *optional*, defaults to `None`): |
|
A list of regular expression strings that will be used to truncate the returned string. This can be |
|
used to remove extra pieces of code (e.g. truncate if observing a comment symbol "#" at the beginning |
|
of a new line). An example pattern could be `["^#", re.escape("<|endoftext|>"), "^'''", "\n\n\n"]`. |
|
kwargs (additional keyword arguments, *optional*): |
|
Will be passed to the underlying model specific decode method. |
|
|
|
Returns: |
|
`str`: The decoded sentence. |
|
""" |
|
|
|
token_ids = to_py_obj(token_ids) |
|
|
|
decoded_text = self._decode( |
|
token_ids=token_ids, |
|
skip_special_tokens=skip_special_tokens, |
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces, |
|
**kwargs, |
|
) |
|
|
|
if truncate_before_pattern is not None and len(truncate_before_pattern) > 0: |
|
decoded_text = self.truncate(decoded_text, truncate_before_pattern) |
|
|
|
return decoded_text |
|
|
|
def _decode( |
|
self, |
|
token_ids: List[int], |
|
skip_special_tokens: bool = False, |
|
clean_up_tokenization_spaces: bool = None, |
|
spaces_between_special_tokens: bool = True, |
|
**kwargs, |
|
) -> str: |
|
|
|
def _decode_imgurl(img_token_ids): |
|
assert img_token_ids[0] == self.img_start_id and img_token_ids[-1] == self.img_end_id |
|
img_token_ids = img_token_ids[1:-1] |
|
img_token_ids = img_token_ids[: img_token_ids.index(self.img_pad_id)] |
|
return [self.img_start_id] + img_token_ids + [self.img_end_id] |
|
|
|
token_ids = _replace_closed_tag(token_ids, self.img_start_id, self.img_end_id, _decode_imgurl) |
|
|
|
return super()._decode( |
|
token_ids, skip_special_tokens, clean_up_tokenization_spaces, spaces_between_special_tokens, **kwargs |
|
) |
|
|
|
def truncate(self, completion, truncate_before_pattern): |
|
def find_re(string, pattern, start_pos): |
|
m = pattern.search(string, start_pos) |
|
return m.start() if m else -1 |
|
|
|
terminals = [re.compile(pattern, re.MULTILINE) for pattern in truncate_before_pattern] |
|
|
|
prints = list(re.finditer("^print", completion, re.MULTILINE)) |
|
|
|
if len(prints) > 1: |
|
completion = completion[: prints[1].start()] |
|
|
|
defs = list(re.finditer("^def", completion, re.MULTILINE)) |
|
|
|
if len(defs) > 1: |
|
completion = completion[: defs[1].start()] |
|
|
|
start_pos = 0 |
|
|
|
terminals_pos = [ |
|
pos for pos in [find_re(completion, terminal, start_pos) for terminal in terminals] if pos != -1 |
|
] |
|
|
|
if len(terminals_pos) > 0: |
|
return completion[: min(terminals_pos)] |
|
else: |
|
return completion |
|
|
|
def from_list_format(self, list_format: List[Dict]): |
|
text = '' |
|
num_images = 0 |
|
for ele in list_format: |
|
if 'image' in ele: |
|
num_images += 1 |
|
text += f'Picture {num_images}:' |
|
text += self.image_start_tag + ele['image'] + self.image_end_tag |
|
text += '\n' |
|
elif 'text' in ele: |
|
text += ele['text'] |
|
elif 'box' in ele: |
|
if 'ref' in ele: |
|
text += self.ref_start_tag + ele['ref'] + self.ref_end_tag |
|
for box in ele['box']: |
|
text += self.box_start_tag + '(%d,%d),(%d,%d)' % (box[0], box[1], box[2], box[3]) + self.box_end_tag |
|
else: |
|
raise ValueError("Unsupport element: " + str(ele)) |
|
return text |
|
|
|
def _fetch_latest_picture(self, response, history): |
|
if history is None: |
|
history = [] |
|
_history = history + [(response, None)] |
|
for q, r in _history[::-1]: |
|
for ele in self.to_list_format(q)[::-1]: |
|
if 'image' in ele: |
|
return ele['image'] |
|
return None |
|
|
|
def _fetch_all_box_with_ref(self, text): |
|
list_format = self.to_list_format(text) |
|
output = [] |
|
for i, ele in enumerate(list_format): |
|
if 'box' in ele: |
|
bbox = tuple(map(int, ele['box'].replace('(', '').replace(')', '').split(','))) |
|
assert len(bbox) == 4 |
|
output.append({'box': bbox}) |
|
if i > 0 and 'ref' in list_format[i - 1]: |
|
output[-1]['ref'] = list_format[i - 1]['ref'].strip() |
|
return output |
|
|
|
def draw_bbox_on_latest_picture( |
|
self, |
|
response, |
|
history=None, |
|
) -> Optional[Image.Image]: |
|
image = self._fetch_latest_picture(response, history) |
|
if image is None: |
|
return None |
|
if image.startswith("http://") or image.startswith("https://"): |
|
image = Image.open(requests.get(image, stream=True).raw).convert("RGB") |
|
h, w = image.height, image.width |
|
else: |
|
image = np.asarray(Image.open(image).convert("RGB")) |
|
h, w = image.shape[0], image.shape[1] |
|
visualizer = Visualizer(image) |
|
|
|
boxes = self._fetch_all_box_with_ref(response) |
|
if not boxes: |
|
return None |
|
color = random.choice([_ for _ in mcolors.TABLEAU_COLORS.keys()]) |
|
for box in boxes: |
|
if 'ref' in box: |
|
color = random.choice([_ for _ in mcolors.TABLEAU_COLORS.keys()]) |
|
x1, y1, x2, y2 = box['box'] |
|
x1, y1, x2, y2 = (int(x1 / 1000 * w), int(y1 / 1000 * h), int(x2 / 1000 * w), int(y2 / 1000 * h)) |
|
visualizer.draw_box((x1, y1, x2, y2), alpha=1, edge_color=color) |
|
if 'ref' in box: |
|
visualizer.draw_text(box['ref'], (x1, y1), color=color, horizontal_alignment="left") |
|
return visualizer.output |
|
|
|
|
|
class VisImage: |
|
def __init__(self, img, scale=1.0): |
|
self.img = img |
|
self.scale = scale |
|
self.width, self.height = img.shape[1], img.shape[0] |
|
self._setup_figure(img) |
|
|
|
def _setup_figure(self, img): |
|
fig = mplfigure.Figure(frameon=False) |
|
self.dpi = fig.get_dpi() |
|
|
|
|
|
fig.set_size_inches( |
|
(self.width * self.scale + 1e-2) / self.dpi, |
|
(self.height * self.scale + 1e-2) / self.dpi, |
|
) |
|
self.canvas = FigureCanvasAgg(fig) |
|
|
|
ax = fig.add_axes([0.0, 0.0, 1.0, 1.0]) |
|
ax.axis("off") |
|
self.fig = fig |
|
self.ax = ax |
|
self.reset_image(img) |
|
|
|
def reset_image(self, img): |
|
img = img.astype("uint8") |
|
self.ax.imshow(img, extent=(0, self.width, self.height, 0), interpolation="nearest") |
|
|
|
def save(self, filepath): |
|
self.fig.savefig(filepath) |
|
|
|
def get_image(self): |
|
canvas = self.canvas |
|
s, (width, height) = canvas.print_to_buffer() |
|
|
|
buffer = np.frombuffer(s, dtype="uint8") |
|
|
|
img_rgba = buffer.reshape(height, width, 4) |
|
rgb, alpha = np.split(img_rgba, [3], axis=2) |
|
return rgb.astype("uint8") |
|
|
|
|
|
class Visualizer: |
|
def __init__(self, img_rgb, metadata=None, scale=1.0): |
|
self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8) |
|
self.output = VisImage(self.img, scale=scale) |
|
self.cpu_device = torch.device("cpu") |
|
|
|
|
|
self._default_font_size = max( |
|
np.sqrt(self.output.height * self.output.width) // 30, 15 // scale |
|
) |
|
|
|
def draw_text( |
|
self, |
|
text, |
|
position, |
|
*, |
|
font_size=None, |
|
color="g", |
|
horizontal_alignment="center", |
|
rotation=0, |
|
): |
|
if not font_size: |
|
font_size = self._default_font_size |
|
|
|
|
|
color = np.maximum(list(mplc.to_rgb(color)), 0.2) |
|
color[np.argmax(color)] = max(0.8, np.max(color)) |
|
|
|
x, y = position |
|
self.output.ax.text( |
|
x, |
|
y, |
|
text, |
|
size=font_size * self.output.scale, |
|
bbox={"facecolor": "black", "alpha": 0.8, "pad": 0.7, "edgecolor": "none"}, |
|
verticalalignment="top", |
|
horizontalalignment=horizontal_alignment, |
|
color=color, |
|
zorder=10, |
|
rotation=rotation, |
|
) |
|
return self.output |
|
|
|
def draw_box(self, box_coord, alpha=0.5, edge_color="g", line_style="-"): |
|
x0, y0, x1, y1 = box_coord |
|
width = x1 - x0 |
|
height = y1 - y0 |
|
|
|
linewidth = max(self._default_font_size / 4, 1) |
|
|
|
self.output.ax.add_patch( |
|
mpl.patches.Rectangle( |
|
(x0, y0), |
|
width, |
|
height, |
|
fill=False, |
|
edgecolor=edge_color, |
|
linewidth=linewidth * self.output.scale, |
|
alpha=alpha, |
|
linestyle=line_style, |
|
) |
|
) |
|
return self.output |
|
|
|
def get_output(self): |
|
return self.output |
|
|