File size: 18,520 Bytes
377d3d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import json
import math
import os
import os.path as osp
import re
import string
import time

import numpy as np
import pandas as pd
import torch
import tqdm
from huggingface_hub import snapshot_download
from mmengine import mkdir_or_exist
from mmengine.dist import (collect_results, get_dist_info, get_rank, init_dist,
                           master_only)
from mmengine.utils.dl_utils import set_multi_processing
from peft import PeftModel
from rich.console import Console
from rich.table import Table
from torch.utils.data import Dataset
from transformers import (AutoModel, AutoModelForCausalLM, AutoTokenizer,
                          BitsAndBytesConfig, SiglipImageProcessor,
                          SiglipVisionModel, GenerationConfig)

from xtuner.dataset.utils import decode_base64_to_image, expand2square
from xtuner.model.utils import LoadWoInit, prepare_inputs_labels_for_multimodal
from xtuner.tools.utils import get_stop_criteria, is_cn_string
from xtuner.utils import (DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX,
                          PROMPT_TEMPLATE)

TORCH_DTYPE_MAP = dict(
    fp16=torch.float16, bf16=torch.bfloat16, fp32=torch.float32, auto='auto')


def parse_args():
    parser = argparse.ArgumentParser(description='MMBench')
    parser.add_argument(
        'model_name_or_path', help='Hugging Face model name or path')
    parser.add_argument('--data-path', default=None, help='data path')
    parser.add_argument('--work-dir', help='the dir to save results')
    parser.add_argument('--llava', default=None, help='llava name or path')
    parser.add_argument(
        '--visual-encoder', default=None, help='visual encoder name or path')
    parser.add_argument(
        '--visual-select-layer', default=-2, help='visual select layer')
    parser.add_argument(
        '--prompt-template',
        choices=PROMPT_TEMPLATE.keys(),
        default=None,
        help='Specify a prompt template')
    parser.add_argument(
        '--stop-words', nargs='+', type=str, default=[], help='Stop words')
    parser.add_argument(
        '--torch-dtype',
        default='fp16',
        choices=TORCH_DTYPE_MAP.keys(),
        help='Override the default `torch.dtype` and load the model under '
        'a specific `dtype`.')
    parser.add_argument(
        '--bits',
        type=int,
        choices=[4, 8, None],
        default=None,
        help='LLM bits')
    parser.add_argument(
        '--bot-name', type=str, default='BOT', help='Name for Bot')
    parser.add_argument(
        '--offload-folder',
        default=None,
        help='The folder in which to offload the model weights (or where the '
        'model weights are already offloaded).')
    parser.add_argument(
        '--max-new-tokens',
        type=int,
        default=100,
        help='Maximum number of new tokens allowed in generated text')
    parser.add_argument(
        '--seed',
        type=int,
        default=0,
        help='Random seed for reproducible text generation')
    parser.add_argument(
        '--launcher',
        choices=['none', 'pytorch', 'slurm', 'mpi'],
        default='none',
        help='job launcher')
    args = parser.parse_args()
    return args


@master_only
def master_print(msg):
    print(msg)


class MMBenchDataset(Dataset):
    ABBRS = {
        'coarse_perception': 'CP',
        'finegrained_perception (instance-level)': 'FP-S',
        'finegrained_perception (cross-instance)': 'FP-C',
        'logic_reasoning': 'LR',
        'relation_reasoning': 'RR',
        'attribute_reasoning': 'AR',
        'sketch_reasoning': 'Sketch Reasoning',
        'scenery_building': 'Scenery & Building',
        'food_clothes': 'Food & Clothes',
        'historical_figure': 'Historical Figure',
        'traditional_show': 'Traditional Show',
        'calligraphy_painting': 'Calligraphy Painting',
        'cultural_relic': 'Cultural Relic'
    }

    def __init__(self, data_file):
        self.data_file = data_file
        self.df = pd.read_csv(data_file, sep='\t')
        self.split = 'dev' if 'answer' in self.df.iloc[0].keys() else 'test'
        self.has_l2_category = 'l2-category' in self.df.columns.to_list()

    def get_image(self, image):
        while len(image) < 16:
            image = self.df[self.df['index'] == int(image)]['image'].values
            assert len(image) == 1
            image = image[0]
        image = decode_base64_to_image(image)
        return image

    def __len__(self):
        return len(self.df)

    def __getitem__(self, idx):
        index = self.df.iloc[idx]['index']
        image = self.df.iloc[idx]['image']
        image = self.get_image(image)
        question = self.df.iloc[idx]['question']
        answer = self.df.iloc[idx]['answer'] if 'answer' in self.df.iloc[
            0].keys() else None
        category = self.df.iloc[idx]['category']

        options = {
            cand: self.load_from_df(idx, cand)
            for cand in string.ascii_uppercase
            if self.load_from_df(idx, cand) is not None
        }
        options_prompt = ''
        for key, item in options.items():
            options_prompt += f'{key}. {item}\n'

        hint = self.load_from_df(idx, 'hint')
        data = {
            'img': image,
            'question': question,
            'answer': answer,
            'options': options_prompt,
            'category': category,
            'options_dict': options,
            'index': index,
            'context': hint,
        }
        if self.has_l2_category:
            data.update({'l2-category': self.df.iloc[idx]['l2-category']})
        return data

    def load_from_df(self, idx, key):
        if key in self.df.iloc[idx] and not pd.isna(self.df.iloc[idx][key]):
            return self.df.iloc[idx][key]
        else:
            return None

    @master_only
    def eval_result(self, result_df, show=True):

        def calc_acc(df, group='category'):
            assert group in ['overall', 'category', 'l2-category']
            if group == 'overall':
                res = {'Average': np.mean(df['hit'])}
            else:
                res = {}
                abilities = list(set(df[group]))
                abilities.sort()
                for ab in abilities:
                    sub_df = df[df[group] == ab]
                    ab = self.ABBRS[ab] if ab in self.ABBRS else ab
                    res[ab] = np.mean(sub_df['hit'])
            return res

        def eval_sub_data(sub_data, answer_map):
            lt = len(sub_data)
            for i in range(lt):
                item = sub_data.iloc[i]
                match = re.search(r'([A-D]+)', item['prediction'])
                pred = match.group(1) if match else ''
                gt = answer_map[item['index']]
                if gt != pred:
                    return 0
            return 1

        def show_result(ret_json):
            show_dict = ret_json.copy()
            table = Table(title=f' MMBench ({self.data_file}) ')
            console = Console()
            table.add_column('Category', justify='left')
            table.add_column('Accuracy (%)', justify='right')
            average = show_dict.pop('Average') * 100
            table.add_row('Average', f'{average:.1f}')
            table.add_section()
            for cat_name, cat_acc in show_dict.items():
                table.add_row(cat_name, f'{cat_acc * 100:.1f}')
            with console.capture() as capture:
                console.print(table, end='')
            print('\n' + capture.get())
            print('Note: Please be cautious if you use the results in papers, '
                  "since we don't use ChatGPT as a helper for choice "
                  'extraction')

        data = result_df.sort_values(by='index')
        data['prediction'] = [str(x) for x in data['prediction']]
        for k in data.keys():
            data[k.lower() if k not in 'ABCD' else k] = data.pop(k)

        data_main = data[data['index'] < int(1e6)]
        cate_map = {
            i: c
            for i, c in zip(self.df['index'], self.df['category'])
        }
        if self.has_l2_category:
            l2_cate_map = {
                i: c
                for i, c in zip(self.df['index'], self.df['l2-category'])
            }
        answer_map = {
            i: c
            for i, c in zip(self.df['index'], self.df['answer'])
        }

        lt = len(data_main)
        hit, tot = 0, 0
        result = {}
        for i in range(lt):
            item_main = data_main.iloc[i]
            idx = item_main['index']
            assert idx not in result
            sub_data = data[data['index'] % int(1e6) == idx]
            ret = eval_sub_data(sub_data, answer_map)
            result[idx] = ret
            hit += ret
            tot += 1

        indices = data_main['index']
        data_main = data_main.copy()
        data_main['hit'] = [result[i] for i in indices]
        main_idx = data_main['index']
        data_main['category'] = [cate_map[i] for i in main_idx]

        ret_json = calc_acc(data_main, 'overall')

        if self.has_l2_category:
            data_main['l2-category'] = [l2_cate_map[i] for i in main_idx]
            l2 = calc_acc(data_main, 'l2-category')
            ret_json.update(l2)
        else:
            leaf = calc_acc(data_main, 'category')
            ret_json.update(leaf)
        if show:
            show_result(ret_json)
        return ret_json


def main():
    args = parse_args()

    torch.manual_seed(args.seed)

    if args.launcher != 'none':
        set_multi_processing(distributed=True)
        init_dist(args.launcher)

        rank, world_size = get_dist_info()
        torch.cuda.set_device(rank)
    else:
        rank = 0
        world_size = 1

    # build llm
    quantization_config = None
    load_in_8bit = False
    if args.bits == 4:
        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            load_in_8bit=False,
            llm_int8_threshold=6.0,
            llm_int8_has_fp16_weight=False,
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type='nf4')
    elif args.bits == 8:
        load_in_8bit = True
    model_kwargs = {
        'quantization_config': quantization_config,
        'load_in_8bit': load_in_8bit,
        'device_map': rank if world_size > 1 else 'auto',
        'offload_folder': args.offload_folder,
        'trust_remote_code': True,
        'torch_dtype': TORCH_DTYPE_MAP[args.torch_dtype]
    }

    # build llm
    with LoadWoInit():
        llm = AutoModelForCausalLM.from_pretrained(args.model_name_or_path,
                                                   **model_kwargs)
    tokenizer = AutoTokenizer.from_pretrained(
        args.model_name_or_path,
        trust_remote_code=True,
        encode_special_tokens=True)
    master_print(f'Load LLM from {args.model_name_or_path}')

    llava_path = snapshot_download(
        repo_id=args.llava) if not osp.isdir(args.llava) else args.llava

    # build visual_encoder
    if 'visual_encoder' in os.listdir(llava_path):
        assert args.visual_encoder is None, (
            "Please don't specify the `--visual-encoder` since passed "
            '`--llava` contains a visual encoder!')
        visual_encoder_path = osp.join(llava_path, 'visual_encoder')
    else:
        assert args.visual_encoder is not None, (
            'Please specify the `--visual-encoder`!')
        visual_encoder_path = args.visual_encoder
    with LoadWoInit():
        visual_encoder = SiglipVisionModel.from_pretrained(
            visual_encoder_path, torch_dtype=TORCH_DTYPE_MAP[args.torch_dtype])
        image_processor = SiglipImageProcessor.from_pretrained(
            visual_encoder_path)
    master_print(f'Load visual_encoder from {visual_encoder_path}')

    # load adapter
    if 'llm_adapter' in os.listdir(llava_path):
        adapter_path = osp.join(llava_path, 'llm_adapter')

        with LoadWoInit():
            llm = PeftModel.from_pretrained(
                llm, adapter_path, offload_folder=args.offload_folder)

        master_print(f'Load LLM adapter from {args.llava}')

    if 'visual_encoder_adapter' in os.listdir(llava_path):
        adapter_path = osp.join(llava_path, 'visual_encoder_adapter')
        visual_encoder = PeftModel.from_pretrained(
            visual_encoder, adapter_path, offload_folder=args.offload_folder)
        master_print(f'Load visual_encoder adapter from {args.llava}')

    # build projector
    projector_path = osp.join(llava_path, 'projector')
    with LoadWoInit():
        projector = AutoModel.from_pretrained(
            projector_path, torch_dtype=TORCH_DTYPE_MAP[args.torch_dtype])
    master_print(f'Load projector from {args.llava}')

    projector.cuda()
    projector.eval()

    visual_encoder.cuda()
    visual_encoder.eval()

    llm.eval()

    stop_words = args.stop_words
    if args.prompt_template:
        template = PROMPT_TEMPLATE[args.prompt_template]
        stop_words += template.get('STOP_WORDS', [])
    stop_criteria = get_stop_criteria(
        tokenizer=tokenizer, stop_words=stop_words)

    gen_config = GenerationConfig(
        max_new_tokens=args.max_new_tokens,
        do_sample=False,
        eos_token_id=tokenizer.eos_token_id,
        pad_token_id=tokenizer.pad_token_id
        if tokenizer.pad_token_id is not None else tokenizer.eos_token_id,
    )

    # work_dir
    if args.work_dir is not None:
        # update configs according to CLI args if args.work_dir is not None
        save_dir = args.work_dir
    else:
        # use config filename as default work_dir
        save_dir = osp.join('./work_dirs',
                            osp.splitext(osp.basename(args.data_path))[0])
    timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime(time.time()))
    save_dir = osp.join(save_dir, timestamp)

    if rank == 0:
        mkdir_or_exist(osp.abspath(save_dir))
        print('=======================================================')
        print(f'Dataset path: {osp.abspath(args.data_path)}\n'
              f'Results will be saved to {osp.abspath(save_dir)}')
        print('=======================================================')

        args_path = osp.join(save_dir, 'args.json')
        with open(args_path, 'w') as f:
            json.dump(args.__dict__, f, indent=2)

    results_xlsx_path = osp.join(save_dir, 'mmbench_result.xlsx')
    results_json_path = osp.join(save_dir, 'mmbench_result.json')

    dataset = MMBenchDataset(args.data_path)

    results = []
    n_samples = len(dataset)
    per_rank_samples = math.ceil(n_samples / world_size)

    per_rank_ids = range(per_rank_samples * rank,
                         min(n_samples, per_rank_samples * (rank + 1)))
    for i in tqdm.tqdm(per_rank_ids, desc=f'Rank {rank}'):
        data_sample = dataset[i]
        if data_sample['context'] is not None:
            text = data_sample['context'] + '\n' + data_sample[
                'question'] + '\n' + data_sample['options']
        else:
            text = data_sample['question'] + '\n' + data_sample['options']

        text = DEFAULT_IMAGE_TOKEN + '\n' + text

        if is_cn_string(text):
            text = text + '请直接回答选项字母。'
        else:
            text = text + ("Answer with the option's letter from the "
                           'given choices directly.')

        if args.prompt_template:
            prompt_text = ''
            template = PROMPT_TEMPLATE[args.prompt_template]
            prompt_text += template['INSTRUCTION'].format(
                input=text, round=1, bot_name=args.bot_name)
        else:
            prompt_text = text
        inputs = prompt_text

        image = data_sample['img'].convert('RGB')
        image = expand2square(
            image, tuple(int(x * 255) for x in image_processor.image_mean))
        image = image_processor.preprocess(
            image, return_tensors='pt')['pixel_values'][0]
        image = image.cuda().unsqueeze(0)
        visual_outputs = visual_encoder(image, output_hidden_states=True)
        pixel_values = projector(
            visual_outputs.hidden_states[args.visual_select_layer][:, 1:])

        chunk_encode = []
        for idx, chunk in enumerate(inputs.split(DEFAULT_IMAGE_TOKEN)):
            if idx == 0:
                cur_encode = tokenizer.encode(chunk)
            else:
                cur_encode = tokenizer.encode(chunk, add_special_tokens=False)
            chunk_encode.append(cur_encode)
        assert len(chunk_encode) == 2
        ids = []
        for idx, cur_chunk_encode in enumerate(chunk_encode):
            ids.extend(cur_chunk_encode)
            if idx != len(chunk_encode) - 1:
                ids.append(IMAGE_TOKEN_INDEX)
        ids = torch.tensor(ids).cuda().unsqueeze(0)
        mm_inputs = prepare_inputs_labels_for_multimodal(
            llm=llm, input_ids=ids, pixel_values=pixel_values)

        generate_output = llm.generate(
            **mm_inputs,
            generation_config=gen_config,
            streamer=None,
            bos_token_id=tokenizer.bos_token_id,
            stopping_criteria=stop_criteria)

        predict = tokenizer.decode(
            generate_output[0], skip_special_tokens=True).strip()
        cur_result = {}
        cur_result['question'] = data_sample.get('question')
        cur_result.update(data_sample.get('options_dict'))
        cur_result['prediction'] = predict
        if data_sample.get('category') is not None:
            cur_result['category'] = data_sample.get('category')
        if data_sample.get('l2-category') is not None:
            cur_result['l2-category'] = data_sample.get('l2-category')
        cur_result['index'] = data_sample.get('index')
        cur_result['split'] = data_sample.get('split')
        cur_result['answer'] = data_sample.get('answer')
        results.append(cur_result)

    results = collect_results(results, n_samples)

    if get_rank() == 0:

        results_df = pd.DataFrame(results)
        with pd.ExcelWriter(results_xlsx_path, engine='openpyxl') as writer:
            results_df.to_excel(writer, index=False)

        if dataset.split == 'dev':
            results_dict = dataset.eval_result(results_df, show=True)
            with open(results_json_path, 'w') as f:
                json.dump(results_dict, f, indent=2)
        else:
            print('All done!')


if __name__ == '__main__':

    main()