File size: 18,520 Bytes
377d3d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import json
import math
import os
import os.path as osp
import re
import string
import time
import numpy as np
import pandas as pd
import torch
import tqdm
from huggingface_hub import snapshot_download
from mmengine import mkdir_or_exist
from mmengine.dist import (collect_results, get_dist_info, get_rank, init_dist,
master_only)
from mmengine.utils.dl_utils import set_multi_processing
from peft import PeftModel
from rich.console import Console
from rich.table import Table
from torch.utils.data import Dataset
from transformers import (AutoModel, AutoModelForCausalLM, AutoTokenizer,
BitsAndBytesConfig, SiglipImageProcessor,
SiglipVisionModel, GenerationConfig)
from xtuner.dataset.utils import decode_base64_to_image, expand2square
from xtuner.model.utils import LoadWoInit, prepare_inputs_labels_for_multimodal
from xtuner.tools.utils import get_stop_criteria, is_cn_string
from xtuner.utils import (DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX,
PROMPT_TEMPLATE)
TORCH_DTYPE_MAP = dict(
fp16=torch.float16, bf16=torch.bfloat16, fp32=torch.float32, auto='auto')
def parse_args():
parser = argparse.ArgumentParser(description='MMBench')
parser.add_argument(
'model_name_or_path', help='Hugging Face model name or path')
parser.add_argument('--data-path', default=None, help='data path')
parser.add_argument('--work-dir', help='the dir to save results')
parser.add_argument('--llava', default=None, help='llava name or path')
parser.add_argument(
'--visual-encoder', default=None, help='visual encoder name or path')
parser.add_argument(
'--visual-select-layer', default=-2, help='visual select layer')
parser.add_argument(
'--prompt-template',
choices=PROMPT_TEMPLATE.keys(),
default=None,
help='Specify a prompt template')
parser.add_argument(
'--stop-words', nargs='+', type=str, default=[], help='Stop words')
parser.add_argument(
'--torch-dtype',
default='fp16',
choices=TORCH_DTYPE_MAP.keys(),
help='Override the default `torch.dtype` and load the model under '
'a specific `dtype`.')
parser.add_argument(
'--bits',
type=int,
choices=[4, 8, None],
default=None,
help='LLM bits')
parser.add_argument(
'--bot-name', type=str, default='BOT', help='Name for Bot')
parser.add_argument(
'--offload-folder',
default=None,
help='The folder in which to offload the model weights (or where the '
'model weights are already offloaded).')
parser.add_argument(
'--max-new-tokens',
type=int,
default=100,
help='Maximum number of new tokens allowed in generated text')
parser.add_argument(
'--seed',
type=int,
default=0,
help='Random seed for reproducible text generation')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
args = parser.parse_args()
return args
@master_only
def master_print(msg):
print(msg)
class MMBenchDataset(Dataset):
ABBRS = {
'coarse_perception': 'CP',
'finegrained_perception (instance-level)': 'FP-S',
'finegrained_perception (cross-instance)': 'FP-C',
'logic_reasoning': 'LR',
'relation_reasoning': 'RR',
'attribute_reasoning': 'AR',
'sketch_reasoning': 'Sketch Reasoning',
'scenery_building': 'Scenery & Building',
'food_clothes': 'Food & Clothes',
'historical_figure': 'Historical Figure',
'traditional_show': 'Traditional Show',
'calligraphy_painting': 'Calligraphy Painting',
'cultural_relic': 'Cultural Relic'
}
def __init__(self, data_file):
self.data_file = data_file
self.df = pd.read_csv(data_file, sep='\t')
self.split = 'dev' if 'answer' in self.df.iloc[0].keys() else 'test'
self.has_l2_category = 'l2-category' in self.df.columns.to_list()
def get_image(self, image):
while len(image) < 16:
image = self.df[self.df['index'] == int(image)]['image'].values
assert len(image) == 1
image = image[0]
image = decode_base64_to_image(image)
return image
def __len__(self):
return len(self.df)
def __getitem__(self, idx):
index = self.df.iloc[idx]['index']
image = self.df.iloc[idx]['image']
image = self.get_image(image)
question = self.df.iloc[idx]['question']
answer = self.df.iloc[idx]['answer'] if 'answer' in self.df.iloc[
0].keys() else None
category = self.df.iloc[idx]['category']
options = {
cand: self.load_from_df(idx, cand)
for cand in string.ascii_uppercase
if self.load_from_df(idx, cand) is not None
}
options_prompt = ''
for key, item in options.items():
options_prompt += f'{key}. {item}\n'
hint = self.load_from_df(idx, 'hint')
data = {
'img': image,
'question': question,
'answer': answer,
'options': options_prompt,
'category': category,
'options_dict': options,
'index': index,
'context': hint,
}
if self.has_l2_category:
data.update({'l2-category': self.df.iloc[idx]['l2-category']})
return data
def load_from_df(self, idx, key):
if key in self.df.iloc[idx] and not pd.isna(self.df.iloc[idx][key]):
return self.df.iloc[idx][key]
else:
return None
@master_only
def eval_result(self, result_df, show=True):
def calc_acc(df, group='category'):
assert group in ['overall', 'category', 'l2-category']
if group == 'overall':
res = {'Average': np.mean(df['hit'])}
else:
res = {}
abilities = list(set(df[group]))
abilities.sort()
for ab in abilities:
sub_df = df[df[group] == ab]
ab = self.ABBRS[ab] if ab in self.ABBRS else ab
res[ab] = np.mean(sub_df['hit'])
return res
def eval_sub_data(sub_data, answer_map):
lt = len(sub_data)
for i in range(lt):
item = sub_data.iloc[i]
match = re.search(r'([A-D]+)', item['prediction'])
pred = match.group(1) if match else ''
gt = answer_map[item['index']]
if gt != pred:
return 0
return 1
def show_result(ret_json):
show_dict = ret_json.copy()
table = Table(title=f' MMBench ({self.data_file}) ')
console = Console()
table.add_column('Category', justify='left')
table.add_column('Accuracy (%)', justify='right')
average = show_dict.pop('Average') * 100
table.add_row('Average', f'{average:.1f}')
table.add_section()
for cat_name, cat_acc in show_dict.items():
table.add_row(cat_name, f'{cat_acc * 100:.1f}')
with console.capture() as capture:
console.print(table, end='')
print('\n' + capture.get())
print('Note: Please be cautious if you use the results in papers, '
"since we don't use ChatGPT as a helper for choice "
'extraction')
data = result_df.sort_values(by='index')
data['prediction'] = [str(x) for x in data['prediction']]
for k in data.keys():
data[k.lower() if k not in 'ABCD' else k] = data.pop(k)
data_main = data[data['index'] < int(1e6)]
cate_map = {
i: c
for i, c in zip(self.df['index'], self.df['category'])
}
if self.has_l2_category:
l2_cate_map = {
i: c
for i, c in zip(self.df['index'], self.df['l2-category'])
}
answer_map = {
i: c
for i, c in zip(self.df['index'], self.df['answer'])
}
lt = len(data_main)
hit, tot = 0, 0
result = {}
for i in range(lt):
item_main = data_main.iloc[i]
idx = item_main['index']
assert idx not in result
sub_data = data[data['index'] % int(1e6) == idx]
ret = eval_sub_data(sub_data, answer_map)
result[idx] = ret
hit += ret
tot += 1
indices = data_main['index']
data_main = data_main.copy()
data_main['hit'] = [result[i] for i in indices]
main_idx = data_main['index']
data_main['category'] = [cate_map[i] for i in main_idx]
ret_json = calc_acc(data_main, 'overall')
if self.has_l2_category:
data_main['l2-category'] = [l2_cate_map[i] for i in main_idx]
l2 = calc_acc(data_main, 'l2-category')
ret_json.update(l2)
else:
leaf = calc_acc(data_main, 'category')
ret_json.update(leaf)
if show:
show_result(ret_json)
return ret_json
def main():
args = parse_args()
torch.manual_seed(args.seed)
if args.launcher != 'none':
set_multi_processing(distributed=True)
init_dist(args.launcher)
rank, world_size = get_dist_info()
torch.cuda.set_device(rank)
else:
rank = 0
world_size = 1
# build llm
quantization_config = None
load_in_8bit = False
if args.bits == 4:
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
load_in_8bit=False,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4')
elif args.bits == 8:
load_in_8bit = True
model_kwargs = {
'quantization_config': quantization_config,
'load_in_8bit': load_in_8bit,
'device_map': rank if world_size > 1 else 'auto',
'offload_folder': args.offload_folder,
'trust_remote_code': True,
'torch_dtype': TORCH_DTYPE_MAP[args.torch_dtype]
}
# build llm
with LoadWoInit():
llm = AutoModelForCausalLM.from_pretrained(args.model_name_or_path,
**model_kwargs)
tokenizer = AutoTokenizer.from_pretrained(
args.model_name_or_path,
trust_remote_code=True,
encode_special_tokens=True)
master_print(f'Load LLM from {args.model_name_or_path}')
llava_path = snapshot_download(
repo_id=args.llava) if not osp.isdir(args.llava) else args.llava
# build visual_encoder
if 'visual_encoder' in os.listdir(llava_path):
assert args.visual_encoder is None, (
"Please don't specify the `--visual-encoder` since passed "
'`--llava` contains a visual encoder!')
visual_encoder_path = osp.join(llava_path, 'visual_encoder')
else:
assert args.visual_encoder is not None, (
'Please specify the `--visual-encoder`!')
visual_encoder_path = args.visual_encoder
with LoadWoInit():
visual_encoder = SiglipVisionModel.from_pretrained(
visual_encoder_path, torch_dtype=TORCH_DTYPE_MAP[args.torch_dtype])
image_processor = SiglipImageProcessor.from_pretrained(
visual_encoder_path)
master_print(f'Load visual_encoder from {visual_encoder_path}')
# load adapter
if 'llm_adapter' in os.listdir(llava_path):
adapter_path = osp.join(llava_path, 'llm_adapter')
with LoadWoInit():
llm = PeftModel.from_pretrained(
llm, adapter_path, offload_folder=args.offload_folder)
master_print(f'Load LLM adapter from {args.llava}')
if 'visual_encoder_adapter' in os.listdir(llava_path):
adapter_path = osp.join(llava_path, 'visual_encoder_adapter')
visual_encoder = PeftModel.from_pretrained(
visual_encoder, adapter_path, offload_folder=args.offload_folder)
master_print(f'Load visual_encoder adapter from {args.llava}')
# build projector
projector_path = osp.join(llava_path, 'projector')
with LoadWoInit():
projector = AutoModel.from_pretrained(
projector_path, torch_dtype=TORCH_DTYPE_MAP[args.torch_dtype])
master_print(f'Load projector from {args.llava}')
projector.cuda()
projector.eval()
visual_encoder.cuda()
visual_encoder.eval()
llm.eval()
stop_words = args.stop_words
if args.prompt_template:
template = PROMPT_TEMPLATE[args.prompt_template]
stop_words += template.get('STOP_WORDS', [])
stop_criteria = get_stop_criteria(
tokenizer=tokenizer, stop_words=stop_words)
gen_config = GenerationConfig(
max_new_tokens=args.max_new_tokens,
do_sample=False,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id
if tokenizer.pad_token_id is not None else tokenizer.eos_token_id,
)
# work_dir
if args.work_dir is not None:
# update configs according to CLI args if args.work_dir is not None
save_dir = args.work_dir
else:
# use config filename as default work_dir
save_dir = osp.join('./work_dirs',
osp.splitext(osp.basename(args.data_path))[0])
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime(time.time()))
save_dir = osp.join(save_dir, timestamp)
if rank == 0:
mkdir_or_exist(osp.abspath(save_dir))
print('=======================================================')
print(f'Dataset path: {osp.abspath(args.data_path)}\n'
f'Results will be saved to {osp.abspath(save_dir)}')
print('=======================================================')
args_path = osp.join(save_dir, 'args.json')
with open(args_path, 'w') as f:
json.dump(args.__dict__, f, indent=2)
results_xlsx_path = osp.join(save_dir, 'mmbench_result.xlsx')
results_json_path = osp.join(save_dir, 'mmbench_result.json')
dataset = MMBenchDataset(args.data_path)
results = []
n_samples = len(dataset)
per_rank_samples = math.ceil(n_samples / world_size)
per_rank_ids = range(per_rank_samples * rank,
min(n_samples, per_rank_samples * (rank + 1)))
for i in tqdm.tqdm(per_rank_ids, desc=f'Rank {rank}'):
data_sample = dataset[i]
if data_sample['context'] is not None:
text = data_sample['context'] + '\n' + data_sample[
'question'] + '\n' + data_sample['options']
else:
text = data_sample['question'] + '\n' + data_sample['options']
text = DEFAULT_IMAGE_TOKEN + '\n' + text
if is_cn_string(text):
text = text + '请直接回答选项字母。'
else:
text = text + ("Answer with the option's letter from the "
'given choices directly.')
if args.prompt_template:
prompt_text = ''
template = PROMPT_TEMPLATE[args.prompt_template]
prompt_text += template['INSTRUCTION'].format(
input=text, round=1, bot_name=args.bot_name)
else:
prompt_text = text
inputs = prompt_text
image = data_sample['img'].convert('RGB')
image = expand2square(
image, tuple(int(x * 255) for x in image_processor.image_mean))
image = image_processor.preprocess(
image, return_tensors='pt')['pixel_values'][0]
image = image.cuda().unsqueeze(0)
visual_outputs = visual_encoder(image, output_hidden_states=True)
pixel_values = projector(
visual_outputs.hidden_states[args.visual_select_layer][:, 1:])
chunk_encode = []
for idx, chunk in enumerate(inputs.split(DEFAULT_IMAGE_TOKEN)):
if idx == 0:
cur_encode = tokenizer.encode(chunk)
else:
cur_encode = tokenizer.encode(chunk, add_special_tokens=False)
chunk_encode.append(cur_encode)
assert len(chunk_encode) == 2
ids = []
for idx, cur_chunk_encode in enumerate(chunk_encode):
ids.extend(cur_chunk_encode)
if idx != len(chunk_encode) - 1:
ids.append(IMAGE_TOKEN_INDEX)
ids = torch.tensor(ids).cuda().unsqueeze(0)
mm_inputs = prepare_inputs_labels_for_multimodal(
llm=llm, input_ids=ids, pixel_values=pixel_values)
generate_output = llm.generate(
**mm_inputs,
generation_config=gen_config,
streamer=None,
bos_token_id=tokenizer.bos_token_id,
stopping_criteria=stop_criteria)
predict = tokenizer.decode(
generate_output[0], skip_special_tokens=True).strip()
cur_result = {}
cur_result['question'] = data_sample.get('question')
cur_result.update(data_sample.get('options_dict'))
cur_result['prediction'] = predict
if data_sample.get('category') is not None:
cur_result['category'] = data_sample.get('category')
if data_sample.get('l2-category') is not None:
cur_result['l2-category'] = data_sample.get('l2-category')
cur_result['index'] = data_sample.get('index')
cur_result['split'] = data_sample.get('split')
cur_result['answer'] = data_sample.get('answer')
results.append(cur_result)
results = collect_results(results, n_samples)
if get_rank() == 0:
results_df = pd.DataFrame(results)
with pd.ExcelWriter(results_xlsx_path, engine='openpyxl') as writer:
results_df.to_excel(writer, index=False)
if dataset.split == 'dev':
results_dict = dataset.eval_result(results_df, show=True)
with open(results_json_path, 'w') as f:
json.dump(results_dict, f, indent=2)
else:
print('All done!')
if __name__ == '__main__':
main()
|