File size: 20,371 Bytes
377d3d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp
import re
import sys
import torch
from huggingface_hub import snapshot_download
from peft import PeftModel
from transformers import (AutoModel, AutoModelForCausalLM, AutoTokenizer,
BitsAndBytesConfig, SiglipImageProcessor,
SiglipVisionModel, GenerationConfig)
from transformers.generation.streamers import TextStreamer
from xtuner.dataset.utils import expand2square, load_image
from xtuner.model.utils import prepare_inputs_labels_for_multimodal
from xtuner.tools.utils import get_stop_criteria
from xtuner.utils import (DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX,
PROMPT_TEMPLATE, SYSTEM_TEMPLATE)
TORCH_DTYPE_MAP = dict(
fp16=torch.float16, bf16=torch.bfloat16, fp32=torch.float32, auto='auto')
def remove_prefix(state_dict, prefix):
new_state_dict = {}
for key, value in state_dict.items():
if key.startswith(prefix):
new_key = key[len(prefix):]
new_state_dict[new_key] = value
else:
new_state_dict[key] = value
return new_state_dict
def parse_args():
parser = argparse.ArgumentParser(description='Chat with a HF model')
parser.add_argument(
'model_name_or_path', help='Hugging Face model name or path')
adapter_group = parser.add_mutually_exclusive_group()
adapter_group.add_argument(
'--adapter', default=None, help='adapter name or path')
adapter_group.add_argument(
'--llava', default=None, help='llava name or path')
parser.add_argument(
'--visual-encoder', default=None, help='visual encoder name or path')
parser.add_argument(
'--visual-select-layer', default=-2, help='visual select layer')
parser.add_argument('--image', default=None, help='image')
parser.add_argument(
'--torch-dtype',
default='fp16',
choices=TORCH_DTYPE_MAP.keys(),
help='Override the default `torch.dtype` and load the model under '
'a specific `dtype`.')
parser.add_argument(
'--prompt-template',
choices=PROMPT_TEMPLATE.keys(),
default=None,
help='Specify a prompt template')
system_group = parser.add_mutually_exclusive_group()
system_group.add_argument(
'--system', default=None, help='Specify the system text')
system_group.add_argument(
'--system-template',
choices=SYSTEM_TEMPLATE.keys(),
default=None,
help='Specify a system template')
parser.add_argument(
'--bits',
type=int,
choices=[4, 8, None],
default=None,
help='LLM bits')
parser.add_argument(
'--bot-name', type=str, default='BOT', help='Name for Bot')
parser.add_argument(
'--with-plugins',
nargs='+',
choices=['calculate', 'solve', 'search'],
help='Specify plugins to use')
parser.add_argument(
'--no-streamer', action='store_true', help='Whether to with streamer')
parser.add_argument(
'--lagent', action='store_true', help='Whether to use lagent')
parser.add_argument(
'--stop-words', nargs='+', type=str, default=[], help='Stop words')
parser.add_argument(
'--offload-folder',
default=None,
help='The folder in which to offload the model weights (or where the '
'model weights are already offloaded).')
parser.add_argument(
'--max-new-tokens',
type=int,
default=2048,
help='Maximum number of new tokens allowed in generated text')
parser.add_argument(
'--temperature',
type=float,
default=0.1,
help='The value used to modulate the next token probabilities.')
parser.add_argument(
'--top-k',
type=int,
default=40,
help='The number of highest probability vocabulary tokens to '
'keep for top-k-filtering.')
parser.add_argument(
'--top-p',
type=float,
default=0.75,
help='If set to float < 1, only the smallest set of most probable '
'tokens with probabilities that add up to top_p or higher are '
'kept for generation.')
parser.add_argument(
'--repetition-penalty',
type=float,
default=1.0,
help='The parameter for repetition penalty. 1.0 means no penalty.')
parser.add_argument(
'--seed',
type=int,
default=0,
help='Random seed for reproducible text generation')
args = parser.parse_args()
return args
def get_input():
"""Helper function for getting input from users."""
sentinel = '' # ends when this string is seen
result = None
while result is None:
print(('\ndouble enter to end input (EXIT: exit chat, '
'RESET: reset history) >>> '),
end='')
try:
result = '\n'.join(iter(input, sentinel))
except UnicodeDecodeError:
print('Invalid characters detected. Please enter again.')
return result
def main():
args = parse_args()
torch.manual_seed(args.seed)
# build llm
quantization_config = None
load_in_8bit = False
if args.bits == 4:
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
load_in_8bit=False,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4')
elif args.bits == 8:
load_in_8bit = True
model_kwargs = {
'quantization_config': quantization_config,
'load_in_8bit': load_in_8bit,
'device_map': 'auto',
'offload_folder': args.offload_folder,
'trust_remote_code': True,
'torch_dtype': TORCH_DTYPE_MAP[args.torch_dtype]
}
if args.lagent:
from lagent.actions import ActionExecutor, GoogleSearch
from lagent.agents import (CALL_PROTOCOL_CN, FORCE_STOP_PROMPT_CN,
ReAct, ReActProtocol)
from lagent.llms import HFTransformerCasualLM
try:
SERPER_API_KEY = os.environ['SERPER_API_KEY']
except Exception:
print('Please obtain the `SERPER_API_KEY` from https://serper.dev '
'and set it using `export SERPER_API_KEY=xxx`.')
sys.exit(1)
model_kwargs.pop('trust_remote_code')
llm = HFTransformerCasualLM(
args.model_name_or_path, model_kwargs=model_kwargs)
if args.adapter is not None:
print(f'Loading adapter from {args.adapter}...')
llm.model = PeftModel.from_pretrained(
llm.model,
args.adapter,
offload_folder=args.offload_folder,
trust_remote_code=True)
search_tool = GoogleSearch(api_key=SERPER_API_KEY)
chatbot = ReAct(
llm=llm,
action_executor=ActionExecutor(actions=[search_tool]),
protocol=ReActProtocol(
call_protocol=CALL_PROTOCOL_CN,
force_stop=FORCE_STOP_PROMPT_CN))
while True:
text = get_input()
while text.strip() == 'RESET':
print('Log: History responses have been removed!')
chatbot._session_history = []
inputs = ''
text = get_input()
if text.strip() == 'EXIT':
print('Log: Exit!')
exit(0)
response = chatbot.chat(text)
print(response.response)
else:
if args.with_plugins is None:
inner_thoughts_open = False
calculate_open = False
solve_open = False
search_open = False
else:
assert args.prompt_template == args.system_template == 'moss_sft'
from plugins import plugins_api
inner_thoughts_open = True
calculate_open = 'calculate' in args.with_plugins
solve_open = 'solve' in args.with_plugins
search_open = 'search' in args.with_plugins
# pre-import for api and model preparation
if calculate_open:
from plugins import calculate # noqa: F401
if solve_open:
from plugins import solve # noqa: F401
if search_open:
from plugins import search # noqa: F401
# build llm
llm = AutoModelForCausalLM.from_pretrained(args.model_name_or_path,
**model_kwargs)
tokenizer = AutoTokenizer.from_pretrained(
args.model_name_or_path,
trust_remote_code=True,
encode_special_tokens=True)
print(f'Load LLM from {args.model_name_or_path}')
if args.adapter is not None:
llm = PeftModel.from_pretrained(
llm,
args.adapter,
offload_folder=args.offload_folder,
trust_remote_code=True)
print(f'Load adapter from {args.adapter}')
if args.llava is not None:
llava_path = snapshot_download(
repo_id=args.llava) if not osp.isdir(
args.llava) else args.llava
# build visual_encoder
if 'visual_encoder' in os.listdir(llava_path):
assert args.visual_encoder is None, (
"Please don't specify the `--visual-encoder` since passed "
'`--llava` contains a visual encoder!')
visual_encoder_path = osp.join(llava_path, 'visual_encoder')
else:
assert args.visual_encoder is not None, (
'Please specify the `--visual-encoder`!')
visual_encoder_path = args.visual_encoder
visual_encoder = SiglipVisionModel.from_pretrained(
visual_encoder_path,
torch_dtype=TORCH_DTYPE_MAP[args.torch_dtype])
image_processor = SiglipImageProcessor.from_pretrained(
visual_encoder_path)
print(f'Load visual_encoder from {visual_encoder_path}')
# load adapter
if 'llm_adapter' in os.listdir(llava_path):
adapter_path = osp.join(llava_path, 'llm_adapter')
llm = PeftModel.from_pretrained(
llm,
adapter_path,
offload_folder=args.offload_folder,
trust_remote_code=True)
print(f'Load LLM adapter from {args.llava}')
if 'visual_encoder_adapter' in os.listdir(llava_path):
adapter_path = osp.join(llava_path, 'visual_encoder_adapter')
visual_encoder = PeftModel.from_pretrained(
visual_encoder,
adapter_path,
offload_folder=args.offload_folder)
print(f'Load visual_encoder adapter from {args.llava}')
# build projector
projector_path = osp.join(llava_path, 'projector')
projector = AutoModel.from_pretrained(
projector_path,
torch_dtype=TORCH_DTYPE_MAP[args.torch_dtype],
trust_remote_code=True)
print(f'Load projector from {args.llava}')
projector.cuda()
projector.eval()
visual_encoder.cuda()
visual_encoder.eval()
llm.eval()
if args.image is not None:
image = load_image(args.image)
image = expand2square(
image, tuple(int(x * 255) for x in image_processor.image_mean))
image = image_processor.preprocess(
image, return_tensors='pt')['pixel_values'][0]
image = image.cuda().unsqueeze(0)
visual_outputs = visual_encoder(image, output_hidden_states=True)
pixel_values = projector(
visual_outputs.hidden_states[args.visual_select_layer][:, 1:])
stop_words = args.stop_words
sep = ''
if args.prompt_template:
template = PROMPT_TEMPLATE[args.prompt_template]
stop_words += template.get('STOP_WORDS', [])
sep = template.get('SEP', '')
stop_criteria = get_stop_criteria(
tokenizer=tokenizer, stop_words=stop_words)
if args.no_streamer:
streamer = None
else:
streamer = TextStreamer(tokenizer, skip_prompt=True)
gen_config = GenerationConfig(
max_new_tokens=args.max_new_tokens,
do_sample=args.temperature > 0,
temperature=args.temperature,
top_p=args.top_p,
top_k=args.top_k,
repetition_penalty=args.repetition_penalty,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id
if tokenizer.pad_token_id is not None else tokenizer.eos_token_id,
)
n_turn = 0
inputs = ''
while True:
text = get_input()
while text.strip() == 'RESET':
print('Log: History responses have been removed!')
n_turn = 0
inputs = ''
text = get_input()
if text.strip() == 'EXIT':
print('Log: Exit!')
exit(0)
if args.image is not None and n_turn == 0:
text = DEFAULT_IMAGE_TOKEN + '\n' + text
if args.prompt_template:
prompt_text = ''
template = PROMPT_TEMPLATE[args.prompt_template]
if 'SYSTEM' in template and n_turn == 0:
system_text = None
if args.system_template is not None:
system_text = SYSTEM_TEMPLATE[
args.system_template].format(
round=n_turn + 1, bot_name=args.bot_name)
elif args.system is not None:
system_text = args.system
if system_text is not None:
prompt_text += template['SYSTEM'].format(
system=system_text,
round=n_turn + 1,
bot_name=args.bot_name)
prompt_text += template['INSTRUCTION'].format(
input=text, round=n_turn + 1, bot_name=args.bot_name)
if args.prompt_template == args.system_template == 'moss_sft':
if not inner_thoughts_open:
prompt_text.replace('- Inner thoughts: enabled.',
'- Inner thoughts: disabled.')
if not calculate_open:
prompt_text.replace(('- Calculator: enabled. API: '
'Calculate(expression)'),
'- Calculator: disabled.')
if not solve_open:
prompt_text.replace(
'- Equation solver: enabled. API: Solve(equation)',
'- Equation solver: disabled.')
if not search_open:
prompt_text.replace(
'- Web search: enabled. API: Search(query)',
'- Web search: disabled.')
else:
prompt_text = text
inputs += prompt_text
if args.image is None:
if n_turn == 0:
ids = tokenizer.encode(inputs, return_tensors='pt')
else:
ids = tokenizer.encode(
inputs, return_tensors='pt', add_special_tokens=False)
if args.with_plugins is not None:
generate_output = llm.generate(
inputs=ids.cuda(),
generation_config=gen_config,
streamer=streamer,
stopping_criteria=stop_criteria).cpu()
generate_output_text = tokenizer.decode(
generate_output[0][len(ids[0]):])
if streamer is None:
end = '' if generate_output_text[-1] == '\n' else '\n'
print(generate_output_text, end=end)
pattern = r'<\|Commands\|>:(.*?)<eoc>'
command_text = ', '.join(
re.findall(pattern, generate_output_text))
extent_text = plugins_api(
command_text,
calculate_open=calculate_open,
solve_open=solve_open,
search_open=search_open)
end = '' if extent_text[-1] == '\n' else '\n'
print(extent_text, end=end)
extent_text_ids = tokenizer.encode(
extent_text,
return_tensors='pt',
add_special_tokens=False)
new_ids = torch.cat((generate_output, extent_text_ids),
dim=1)
generate_output = llm.generate(
inputs=new_ids.cuda(),
generation_config=gen_config,
streamer=streamer,
stopping_criteria=stop_criteria)
if streamer is None:
output_text = tokenizer.decode(
generate_output[0][len(new_ids[0]):])
end = '' if output_text[-1] == '\n' else '\n'
print(output_text, end=end)
else:
generate_output = llm.generate(
inputs=ids.cuda(),
generation_config=gen_config,
streamer=streamer,
stopping_criteria=stop_criteria)
if streamer is None:
output_text = tokenizer.decode(
generate_output[0][len(ids[0]):])
end = '' if output_text[-1] == '\n' else '\n'
print(output_text, end=end)
inputs = tokenizer.decode(generate_output[0])
else:
chunk_encode = []
for idx, chunk in enumerate(inputs.split(DEFAULT_IMAGE_TOKEN)):
if idx == 0 and n_turn == 0:
cur_encode = tokenizer.encode(chunk)
else:
cur_encode = tokenizer.encode(
chunk, add_special_tokens=False)
chunk_encode.append(cur_encode)
assert len(chunk_encode) == 2
ids = []
for idx, cur_chunk_encode in enumerate(chunk_encode):
ids.extend(cur_chunk_encode)
if idx != len(chunk_encode) - 1:
ids.append(IMAGE_TOKEN_INDEX)
ids = torch.tensor(ids).cuda().unsqueeze(0)
mm_inputs = prepare_inputs_labels_for_multimodal(
llm=llm, input_ids=ids, pixel_values=pixel_values)
generate_output = llm.generate(
**mm_inputs,
generation_config=gen_config,
streamer=streamer,
bos_token_id=tokenizer.bos_token_id,
stopping_criteria=stop_criteria)
if streamer is None:
output_text = tokenizer.decode(generate_output[0])
end = '' if output_text[-1] == '\n' else '\n'
print(output_text, end=end)
inputs += tokenizer.decode(generate_output[0])
n_turn += 1
inputs += sep
if len(generate_output[0]) >= args.max_new_tokens:
print(
'Remove the memory of history responses, since '
f'it exceeds the length limitation {args.max_new_tokens}.')
n_turn = 0
inputs = ''
if __name__ == '__main__':
main()
|