File size: 20,371 Bytes
377d3d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp
import re
import sys

import torch
from huggingface_hub import snapshot_download
from peft import PeftModel
from transformers import (AutoModel, AutoModelForCausalLM, AutoTokenizer,
                          BitsAndBytesConfig, SiglipImageProcessor,
                          SiglipVisionModel, GenerationConfig)
from transformers.generation.streamers import TextStreamer

from xtuner.dataset.utils import expand2square, load_image
from xtuner.model.utils import prepare_inputs_labels_for_multimodal
from xtuner.tools.utils import get_stop_criteria
from xtuner.utils import (DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX,
                          PROMPT_TEMPLATE, SYSTEM_TEMPLATE)

TORCH_DTYPE_MAP = dict(
    fp16=torch.float16, bf16=torch.bfloat16, fp32=torch.float32, auto='auto')


def remove_prefix(state_dict, prefix):
    new_state_dict = {}
    for key, value in state_dict.items():
        if key.startswith(prefix):
            new_key = key[len(prefix):]
            new_state_dict[new_key] = value
        else:
            new_state_dict[key] = value
    return new_state_dict


def parse_args():
    parser = argparse.ArgumentParser(description='Chat with a HF model')
    parser.add_argument(
        'model_name_or_path', help='Hugging Face model name or path')
    adapter_group = parser.add_mutually_exclusive_group()
    adapter_group.add_argument(
        '--adapter', default=None, help='adapter name or path')
    adapter_group.add_argument(
        '--llava', default=None, help='llava name or path')
    parser.add_argument(
        '--visual-encoder', default=None, help='visual encoder name or path')
    parser.add_argument(
        '--visual-select-layer', default=-2, help='visual select layer')
    parser.add_argument('--image', default=None, help='image')
    parser.add_argument(
        '--torch-dtype',
        default='fp16',
        choices=TORCH_DTYPE_MAP.keys(),
        help='Override the default `torch.dtype` and load the model under '
        'a specific `dtype`.')
    parser.add_argument(
        '--prompt-template',
        choices=PROMPT_TEMPLATE.keys(),
        default=None,
        help='Specify a prompt template')
    system_group = parser.add_mutually_exclusive_group()
    system_group.add_argument(
        '--system', default=None, help='Specify the system text')
    system_group.add_argument(
        '--system-template',
        choices=SYSTEM_TEMPLATE.keys(),
        default=None,
        help='Specify a system template')
    parser.add_argument(
        '--bits',
        type=int,
        choices=[4, 8, None],
        default=None,
        help='LLM bits')
    parser.add_argument(
        '--bot-name', type=str, default='BOT', help='Name for Bot')
    parser.add_argument(
        '--with-plugins',
        nargs='+',
        choices=['calculate', 'solve', 'search'],
        help='Specify plugins to use')
    parser.add_argument(
        '--no-streamer', action='store_true', help='Whether to with streamer')
    parser.add_argument(
        '--lagent', action='store_true', help='Whether to use lagent')
    parser.add_argument(
        '--stop-words', nargs='+', type=str, default=[], help='Stop words')
    parser.add_argument(
        '--offload-folder',
        default=None,
        help='The folder in which to offload the model weights (or where the '
        'model weights are already offloaded).')
    parser.add_argument(
        '--max-new-tokens',
        type=int,
        default=2048,
        help='Maximum number of new tokens allowed in generated text')
    parser.add_argument(
        '--temperature',
        type=float,
        default=0.1,
        help='The value used to modulate the next token probabilities.')
    parser.add_argument(
        '--top-k',
        type=int,
        default=40,
        help='The number of highest probability vocabulary tokens to '
        'keep for top-k-filtering.')
    parser.add_argument(
        '--top-p',
        type=float,
        default=0.75,
        help='If set to float < 1, only the smallest set of most probable '
        'tokens with probabilities that add up to top_p or higher are '
        'kept for generation.')
    parser.add_argument(
        '--repetition-penalty',
        type=float,
        default=1.0,
        help='The parameter for repetition penalty. 1.0 means no penalty.')
    parser.add_argument(
        '--seed',
        type=int,
        default=0,
        help='Random seed for reproducible text generation')
    args = parser.parse_args()
    return args


def get_input():
    """Helper function for getting input from users."""
    sentinel = ''  # ends when this string is seen
    result = None
    while result is None:
        print(('\ndouble enter to end input (EXIT: exit chat, '
               'RESET: reset history) >>> '),
              end='')
        try:
            result = '\n'.join(iter(input, sentinel))
        except UnicodeDecodeError:
            print('Invalid characters detected. Please enter again.')
    return result


def main():
    args = parse_args()
    torch.manual_seed(args.seed)

    # build llm
    quantization_config = None
    load_in_8bit = False
    if args.bits == 4:
        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            load_in_8bit=False,
            llm_int8_threshold=6.0,
            llm_int8_has_fp16_weight=False,
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type='nf4')
    elif args.bits == 8:
        load_in_8bit = True
    model_kwargs = {
        'quantization_config': quantization_config,
        'load_in_8bit': load_in_8bit,
        'device_map': 'auto',
        'offload_folder': args.offload_folder,
        'trust_remote_code': True,
        'torch_dtype': TORCH_DTYPE_MAP[args.torch_dtype]
    }
    if args.lagent:
        from lagent.actions import ActionExecutor, GoogleSearch
        from lagent.agents import (CALL_PROTOCOL_CN, FORCE_STOP_PROMPT_CN,
                                   ReAct, ReActProtocol)
        from lagent.llms import HFTransformerCasualLM

        try:
            SERPER_API_KEY = os.environ['SERPER_API_KEY']
        except Exception:
            print('Please obtain the `SERPER_API_KEY` from https://serper.dev '
                  'and set it using `export SERPER_API_KEY=xxx`.')
            sys.exit(1)

        model_kwargs.pop('trust_remote_code')
        llm = HFTransformerCasualLM(
            args.model_name_or_path, model_kwargs=model_kwargs)
        if args.adapter is not None:
            print(f'Loading adapter from {args.adapter}...')
            llm.model = PeftModel.from_pretrained(
                llm.model,
                args.adapter,
                offload_folder=args.offload_folder,
                trust_remote_code=True)
        search_tool = GoogleSearch(api_key=SERPER_API_KEY)
        chatbot = ReAct(
            llm=llm,
            action_executor=ActionExecutor(actions=[search_tool]),
            protocol=ReActProtocol(
                call_protocol=CALL_PROTOCOL_CN,
                force_stop=FORCE_STOP_PROMPT_CN))
        while True:
            text = get_input()
            while text.strip() == 'RESET':
                print('Log: History responses have been removed!')
                chatbot._session_history = []
                inputs = ''
                text = get_input()
            if text.strip() == 'EXIT':
                print('Log: Exit!')
                exit(0)
            response = chatbot.chat(text)
            print(response.response)
    else:
        if args.with_plugins is None:
            inner_thoughts_open = False
            calculate_open = False
            solve_open = False
            search_open = False
        else:
            assert args.prompt_template == args.system_template == 'moss_sft'
            from plugins import plugins_api
            inner_thoughts_open = True
            calculate_open = 'calculate' in args.with_plugins
            solve_open = 'solve' in args.with_plugins
            search_open = 'search' in args.with_plugins
            # pre-import for api and model preparation
            if calculate_open:
                from plugins import calculate  # noqa: F401
            if solve_open:
                from plugins import solve  # noqa: F401
            if search_open:
                from plugins import search  # noqa: F401
        # build llm
        llm = AutoModelForCausalLM.from_pretrained(args.model_name_or_path,
                                                   **model_kwargs)
        tokenizer = AutoTokenizer.from_pretrained(
            args.model_name_or_path,
            trust_remote_code=True,
            encode_special_tokens=True)
        print(f'Load LLM from {args.model_name_or_path}')
        if args.adapter is not None:
            llm = PeftModel.from_pretrained(
                llm,
                args.adapter,
                offload_folder=args.offload_folder,
                trust_remote_code=True)
            print(f'Load adapter from {args.adapter}')
        if args.llava is not None:
            llava_path = snapshot_download(
                repo_id=args.llava) if not osp.isdir(
                    args.llava) else args.llava

            # build visual_encoder
            if 'visual_encoder' in os.listdir(llava_path):
                assert args.visual_encoder is None, (
                    "Please don't specify the `--visual-encoder` since passed "
                    '`--llava` contains a visual encoder!')
                visual_encoder_path = osp.join(llava_path, 'visual_encoder')
            else:
                assert args.visual_encoder is not None, (
                    'Please specify the `--visual-encoder`!')
                visual_encoder_path = args.visual_encoder
            visual_encoder = SiglipVisionModel.from_pretrained(
                visual_encoder_path,
                torch_dtype=TORCH_DTYPE_MAP[args.torch_dtype])
            image_processor = SiglipImageProcessor.from_pretrained(
                visual_encoder_path)
            print(f'Load visual_encoder from {visual_encoder_path}')

            # load adapter
            if 'llm_adapter' in os.listdir(llava_path):
                adapter_path = osp.join(llava_path, 'llm_adapter')
                llm = PeftModel.from_pretrained(
                    llm,
                    adapter_path,
                    offload_folder=args.offload_folder,
                    trust_remote_code=True)
                print(f'Load LLM adapter from {args.llava}')
            if 'visual_encoder_adapter' in os.listdir(llava_path):
                adapter_path = osp.join(llava_path, 'visual_encoder_adapter')
                visual_encoder = PeftModel.from_pretrained(
                    visual_encoder,
                    adapter_path,
                    offload_folder=args.offload_folder)
                print(f'Load visual_encoder adapter from {args.llava}')

            # build projector
            projector_path = osp.join(llava_path, 'projector')
            projector = AutoModel.from_pretrained(
                projector_path,
                torch_dtype=TORCH_DTYPE_MAP[args.torch_dtype],
                trust_remote_code=True)
            print(f'Load projector from {args.llava}')

            projector.cuda()
            projector.eval()
            visual_encoder.cuda()
            visual_encoder.eval()

        llm.eval()

        if args.image is not None:
            image = load_image(args.image)
            image = expand2square(
                image, tuple(int(x * 255) for x in image_processor.image_mean))
            image = image_processor.preprocess(
                image, return_tensors='pt')['pixel_values'][0]
            image = image.cuda().unsqueeze(0)
            visual_outputs = visual_encoder(image, output_hidden_states=True)
            pixel_values = projector(
                visual_outputs.hidden_states[args.visual_select_layer][:, 1:])

        stop_words = args.stop_words
        sep = ''
        if args.prompt_template:
            template = PROMPT_TEMPLATE[args.prompt_template]
            stop_words += template.get('STOP_WORDS', [])
            sep = template.get('SEP', '')
        stop_criteria = get_stop_criteria(
            tokenizer=tokenizer, stop_words=stop_words)

        if args.no_streamer:
            streamer = None
        else:
            streamer = TextStreamer(tokenizer, skip_prompt=True)

        gen_config = GenerationConfig(
            max_new_tokens=args.max_new_tokens,
            do_sample=args.temperature > 0,
            temperature=args.temperature,
            top_p=args.top_p,
            top_k=args.top_k,
            repetition_penalty=args.repetition_penalty,
            eos_token_id=tokenizer.eos_token_id,
            pad_token_id=tokenizer.pad_token_id
            if tokenizer.pad_token_id is not None else tokenizer.eos_token_id,
        )

        n_turn = 0
        inputs = ''
        while True:
            text = get_input()
            while text.strip() == 'RESET':
                print('Log: History responses have been removed!')
                n_turn = 0
                inputs = ''
                text = get_input()
            if text.strip() == 'EXIT':
                print('Log: Exit!')
                exit(0)

            if args.image is not None and n_turn == 0:
                text = DEFAULT_IMAGE_TOKEN + '\n' + text

            if args.prompt_template:
                prompt_text = ''
                template = PROMPT_TEMPLATE[args.prompt_template]
                if 'SYSTEM' in template and n_turn == 0:
                    system_text = None
                    if args.system_template is not None:
                        system_text = SYSTEM_TEMPLATE[
                            args.system_template].format(
                                round=n_turn + 1, bot_name=args.bot_name)
                    elif args.system is not None:
                        system_text = args.system
                    if system_text is not None:
                        prompt_text += template['SYSTEM'].format(
                            system=system_text,
                            round=n_turn + 1,
                            bot_name=args.bot_name)
                prompt_text += template['INSTRUCTION'].format(
                    input=text, round=n_turn + 1, bot_name=args.bot_name)
                if args.prompt_template == args.system_template == 'moss_sft':
                    if not inner_thoughts_open:
                        prompt_text.replace('- Inner thoughts: enabled.',
                                            '- Inner thoughts: disabled.')
                    if not calculate_open:
                        prompt_text.replace(('- Calculator: enabled. API: '
                                             'Calculate(expression)'),
                                            '- Calculator: disabled.')
                    if not solve_open:
                        prompt_text.replace(
                            '- Equation solver: enabled. API: Solve(equation)',
                            '- Equation solver: disabled.')
                    if not search_open:
                        prompt_text.replace(
                            '- Web search: enabled. API: Search(query)',
                            '- Web search: disabled.')
            else:
                prompt_text = text
            inputs += prompt_text
            if args.image is None:
                if n_turn == 0:
                    ids = tokenizer.encode(inputs, return_tensors='pt')
                else:
                    ids = tokenizer.encode(
                        inputs, return_tensors='pt', add_special_tokens=False)

                if args.with_plugins is not None:
                    generate_output = llm.generate(
                        inputs=ids.cuda(),
                        generation_config=gen_config,
                        streamer=streamer,
                        stopping_criteria=stop_criteria).cpu()
                    generate_output_text = tokenizer.decode(
                        generate_output[0][len(ids[0]):])
                    if streamer is None:
                        end = '' if generate_output_text[-1] == '\n' else '\n'
                        print(generate_output_text, end=end)
                    pattern = r'<\|Commands\|>:(.*?)<eoc>'
                    command_text = ', '.join(
                        re.findall(pattern, generate_output_text))
                    extent_text = plugins_api(
                        command_text,
                        calculate_open=calculate_open,
                        solve_open=solve_open,
                        search_open=search_open)
                    end = '' if extent_text[-1] == '\n' else '\n'
                    print(extent_text, end=end)
                    extent_text_ids = tokenizer.encode(
                        extent_text,
                        return_tensors='pt',
                        add_special_tokens=False)
                    new_ids = torch.cat((generate_output, extent_text_ids),
                                        dim=1)

                    generate_output = llm.generate(
                        inputs=new_ids.cuda(),
                        generation_config=gen_config,
                        streamer=streamer,
                        stopping_criteria=stop_criteria)
                    if streamer is None:
                        output_text = tokenizer.decode(
                            generate_output[0][len(new_ids[0]):])
                        end = '' if output_text[-1] == '\n' else '\n'
                        print(output_text, end=end)
                else:
                    generate_output = llm.generate(
                        inputs=ids.cuda(),
                        generation_config=gen_config,
                        streamer=streamer,
                        stopping_criteria=stop_criteria)
                    if streamer is None:
                        output_text = tokenizer.decode(
                            generate_output[0][len(ids[0]):])
                        end = '' if output_text[-1] == '\n' else '\n'
                        print(output_text, end=end)
                inputs = tokenizer.decode(generate_output[0])
            else:
                chunk_encode = []
                for idx, chunk in enumerate(inputs.split(DEFAULT_IMAGE_TOKEN)):
                    if idx == 0 and n_turn == 0:
                        cur_encode = tokenizer.encode(chunk)
                    else:
                        cur_encode = tokenizer.encode(
                            chunk, add_special_tokens=False)
                    chunk_encode.append(cur_encode)
                assert len(chunk_encode) == 2
                ids = []
                for idx, cur_chunk_encode in enumerate(chunk_encode):
                    ids.extend(cur_chunk_encode)
                    if idx != len(chunk_encode) - 1:
                        ids.append(IMAGE_TOKEN_INDEX)
                ids = torch.tensor(ids).cuda().unsqueeze(0)
                mm_inputs = prepare_inputs_labels_for_multimodal(
                    llm=llm, input_ids=ids, pixel_values=pixel_values)

                generate_output = llm.generate(
                    **mm_inputs,
                    generation_config=gen_config,
                    streamer=streamer,
                    bos_token_id=tokenizer.bos_token_id,
                    stopping_criteria=stop_criteria)
                if streamer is None:
                    output_text = tokenizer.decode(generate_output[0])
                    end = '' if output_text[-1] == '\n' else '\n'
                    print(output_text, end=end)
                inputs += tokenizer.decode(generate_output[0])
            n_turn += 1
            inputs += sep
            if len(generate_output[0]) >= args.max_new_tokens:
                print(
                    'Remove the memory of history responses, since '
                    f'it exceeds the length limitation {args.max_new_tokens}.')
                n_turn = 0
                inputs = ''


if __name__ == '__main__':
    main()