StarCycle's picture
init
377d3d1
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import json
import math
import os
import os.path as osp
import re
import string
import time
import numpy as np
import pandas as pd
import torch
import tqdm
from huggingface_hub import snapshot_download
from mmengine import mkdir_or_exist
from mmengine.dist import (collect_results, get_dist_info, get_rank, init_dist,
master_only)
from mmengine.utils.dl_utils import set_multi_processing
from peft import PeftModel
from rich.console import Console
from rich.table import Table
from torch.utils.data import Dataset
from transformers import (AutoModel, AutoModelForCausalLM, AutoTokenizer,
BitsAndBytesConfig, SiglipImageProcessor,
SiglipVisionModel, GenerationConfig)
from xtuner.dataset.utils import decode_base64_to_image, expand2square
from xtuner.model.utils import LoadWoInit, prepare_inputs_labels_for_multimodal
from xtuner.tools.utils import get_stop_criteria, is_cn_string
from xtuner.utils import (DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX,
PROMPT_TEMPLATE)
TORCH_DTYPE_MAP = dict(
fp16=torch.float16, bf16=torch.bfloat16, fp32=torch.float32, auto='auto')
def parse_args():
parser = argparse.ArgumentParser(description='MMBench')
parser.add_argument(
'model_name_or_path', help='Hugging Face model name or path')
parser.add_argument('--data-path', default=None, help='data path')
parser.add_argument('--work-dir', help='the dir to save results')
parser.add_argument('--llava', default=None, help='llava name or path')
parser.add_argument(
'--visual-encoder', default=None, help='visual encoder name or path')
parser.add_argument(
'--visual-select-layer', default=-2, help='visual select layer')
parser.add_argument(
'--prompt-template',
choices=PROMPT_TEMPLATE.keys(),
default=None,
help='Specify a prompt template')
parser.add_argument(
'--stop-words', nargs='+', type=str, default=[], help='Stop words')
parser.add_argument(
'--torch-dtype',
default='fp16',
choices=TORCH_DTYPE_MAP.keys(),
help='Override the default `torch.dtype` and load the model under '
'a specific `dtype`.')
parser.add_argument(
'--bits',
type=int,
choices=[4, 8, None],
default=None,
help='LLM bits')
parser.add_argument(
'--bot-name', type=str, default='BOT', help='Name for Bot')
parser.add_argument(
'--offload-folder',
default=None,
help='The folder in which to offload the model weights (or where the '
'model weights are already offloaded).')
parser.add_argument(
'--max-new-tokens',
type=int,
default=100,
help='Maximum number of new tokens allowed in generated text')
parser.add_argument(
'--seed',
type=int,
default=0,
help='Random seed for reproducible text generation')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
args = parser.parse_args()
return args
@master_only
def master_print(msg):
print(msg)
class MMBenchDataset(Dataset):
ABBRS = {
'coarse_perception': 'CP',
'finegrained_perception (instance-level)': 'FP-S',
'finegrained_perception (cross-instance)': 'FP-C',
'logic_reasoning': 'LR',
'relation_reasoning': 'RR',
'attribute_reasoning': 'AR',
'sketch_reasoning': 'Sketch Reasoning',
'scenery_building': 'Scenery & Building',
'food_clothes': 'Food & Clothes',
'historical_figure': 'Historical Figure',
'traditional_show': 'Traditional Show',
'calligraphy_painting': 'Calligraphy Painting',
'cultural_relic': 'Cultural Relic'
}
def __init__(self, data_file):
self.data_file = data_file
self.df = pd.read_csv(data_file, sep='\t')
self.split = 'dev' if 'answer' in self.df.iloc[0].keys() else 'test'
self.has_l2_category = 'l2-category' in self.df.columns.to_list()
def get_image(self, image):
while len(image) < 16:
image = self.df[self.df['index'] == int(image)]['image'].values
assert len(image) == 1
image = image[0]
image = decode_base64_to_image(image)
return image
def __len__(self):
return len(self.df)
def __getitem__(self, idx):
index = self.df.iloc[idx]['index']
image = self.df.iloc[idx]['image']
image = self.get_image(image)
question = self.df.iloc[idx]['question']
answer = self.df.iloc[idx]['answer'] if 'answer' in self.df.iloc[
0].keys() else None
category = self.df.iloc[idx]['category']
options = {
cand: self.load_from_df(idx, cand)
for cand in string.ascii_uppercase
if self.load_from_df(idx, cand) is not None
}
options_prompt = ''
for key, item in options.items():
options_prompt += f'{key}. {item}\n'
hint = self.load_from_df(idx, 'hint')
data = {
'img': image,
'question': question,
'answer': answer,
'options': options_prompt,
'category': category,
'options_dict': options,
'index': index,
'context': hint,
}
if self.has_l2_category:
data.update({'l2-category': self.df.iloc[idx]['l2-category']})
return data
def load_from_df(self, idx, key):
if key in self.df.iloc[idx] and not pd.isna(self.df.iloc[idx][key]):
return self.df.iloc[idx][key]
else:
return None
@master_only
def eval_result(self, result_df, show=True):
def calc_acc(df, group='category'):
assert group in ['overall', 'category', 'l2-category']
if group == 'overall':
res = {'Average': np.mean(df['hit'])}
else:
res = {}
abilities = list(set(df[group]))
abilities.sort()
for ab in abilities:
sub_df = df[df[group] == ab]
ab = self.ABBRS[ab] if ab in self.ABBRS else ab
res[ab] = np.mean(sub_df['hit'])
return res
def eval_sub_data(sub_data, answer_map):
lt = len(sub_data)
for i in range(lt):
item = sub_data.iloc[i]
match = re.search(r'([A-D]+)', item['prediction'])
pred = match.group(1) if match else ''
gt = answer_map[item['index']]
if gt != pred:
return 0
return 1
def show_result(ret_json):
show_dict = ret_json.copy()
table = Table(title=f' MMBench ({self.data_file}) ')
console = Console()
table.add_column('Category', justify='left')
table.add_column('Accuracy (%)', justify='right')
average = show_dict.pop('Average') * 100
table.add_row('Average', f'{average:.1f}')
table.add_section()
for cat_name, cat_acc in show_dict.items():
table.add_row(cat_name, f'{cat_acc * 100:.1f}')
with console.capture() as capture:
console.print(table, end='')
print('\n' + capture.get())
print('Note: Please be cautious if you use the results in papers, '
"since we don't use ChatGPT as a helper for choice "
'extraction')
data = result_df.sort_values(by='index')
data['prediction'] = [str(x) for x in data['prediction']]
for k in data.keys():
data[k.lower() if k not in 'ABCD' else k] = data.pop(k)
data_main = data[data['index'] < int(1e6)]
cate_map = {
i: c
for i, c in zip(self.df['index'], self.df['category'])
}
if self.has_l2_category:
l2_cate_map = {
i: c
for i, c in zip(self.df['index'], self.df['l2-category'])
}
answer_map = {
i: c
for i, c in zip(self.df['index'], self.df['answer'])
}
lt = len(data_main)
hit, tot = 0, 0
result = {}
for i in range(lt):
item_main = data_main.iloc[i]
idx = item_main['index']
assert idx not in result
sub_data = data[data['index'] % int(1e6) == idx]
ret = eval_sub_data(sub_data, answer_map)
result[idx] = ret
hit += ret
tot += 1
indices = data_main['index']
data_main = data_main.copy()
data_main['hit'] = [result[i] for i in indices]
main_idx = data_main['index']
data_main['category'] = [cate_map[i] for i in main_idx]
ret_json = calc_acc(data_main, 'overall')
if self.has_l2_category:
data_main['l2-category'] = [l2_cate_map[i] for i in main_idx]
l2 = calc_acc(data_main, 'l2-category')
ret_json.update(l2)
else:
leaf = calc_acc(data_main, 'category')
ret_json.update(leaf)
if show:
show_result(ret_json)
return ret_json
def main():
args = parse_args()
torch.manual_seed(args.seed)
if args.launcher != 'none':
set_multi_processing(distributed=True)
init_dist(args.launcher)
rank, world_size = get_dist_info()
torch.cuda.set_device(rank)
else:
rank = 0
world_size = 1
# build llm
quantization_config = None
load_in_8bit = False
if args.bits == 4:
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
load_in_8bit=False,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4')
elif args.bits == 8:
load_in_8bit = True
model_kwargs = {
'quantization_config': quantization_config,
'load_in_8bit': load_in_8bit,
'device_map': rank if world_size > 1 else 'auto',
'offload_folder': args.offload_folder,
'trust_remote_code': True,
'torch_dtype': TORCH_DTYPE_MAP[args.torch_dtype]
}
# build llm
with LoadWoInit():
llm = AutoModelForCausalLM.from_pretrained(args.model_name_or_path,
**model_kwargs)
tokenizer = AutoTokenizer.from_pretrained(
args.model_name_or_path,
trust_remote_code=True,
encode_special_tokens=True)
master_print(f'Load LLM from {args.model_name_or_path}')
llava_path = snapshot_download(
repo_id=args.llava) if not osp.isdir(args.llava) else args.llava
# build visual_encoder
if 'visual_encoder' in os.listdir(llava_path):
assert args.visual_encoder is None, (
"Please don't specify the `--visual-encoder` since passed "
'`--llava` contains a visual encoder!')
visual_encoder_path = osp.join(llava_path, 'visual_encoder')
else:
assert args.visual_encoder is not None, (
'Please specify the `--visual-encoder`!')
visual_encoder_path = args.visual_encoder
with LoadWoInit():
visual_encoder = SiglipVisionModel.from_pretrained(
visual_encoder_path, torch_dtype=TORCH_DTYPE_MAP[args.torch_dtype])
image_processor = SiglipImageProcessor.from_pretrained(
visual_encoder_path)
master_print(f'Load visual_encoder from {visual_encoder_path}')
# load adapter
if 'llm_adapter' in os.listdir(llava_path):
adapter_path = osp.join(llava_path, 'llm_adapter')
with LoadWoInit():
llm = PeftModel.from_pretrained(
llm, adapter_path, offload_folder=args.offload_folder)
master_print(f'Load LLM adapter from {args.llava}')
if 'visual_encoder_adapter' in os.listdir(llava_path):
adapter_path = osp.join(llava_path, 'visual_encoder_adapter')
visual_encoder = PeftModel.from_pretrained(
visual_encoder, adapter_path, offload_folder=args.offload_folder)
master_print(f'Load visual_encoder adapter from {args.llava}')
# build projector
projector_path = osp.join(llava_path, 'projector')
with LoadWoInit():
projector = AutoModel.from_pretrained(
projector_path, torch_dtype=TORCH_DTYPE_MAP[args.torch_dtype])
master_print(f'Load projector from {args.llava}')
projector.cuda()
projector.eval()
visual_encoder.cuda()
visual_encoder.eval()
llm.eval()
stop_words = args.stop_words
if args.prompt_template:
template = PROMPT_TEMPLATE[args.prompt_template]
stop_words += template.get('STOP_WORDS', [])
stop_criteria = get_stop_criteria(
tokenizer=tokenizer, stop_words=stop_words)
gen_config = GenerationConfig(
max_new_tokens=args.max_new_tokens,
do_sample=False,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id
if tokenizer.pad_token_id is not None else tokenizer.eos_token_id,
)
# work_dir
if args.work_dir is not None:
# update configs according to CLI args if args.work_dir is not None
save_dir = args.work_dir
else:
# use config filename as default work_dir
save_dir = osp.join('./work_dirs',
osp.splitext(osp.basename(args.data_path))[0])
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime(time.time()))
save_dir = osp.join(save_dir, timestamp)
if rank == 0:
mkdir_or_exist(osp.abspath(save_dir))
print('=======================================================')
print(f'Dataset path: {osp.abspath(args.data_path)}\n'
f'Results will be saved to {osp.abspath(save_dir)}')
print('=======================================================')
args_path = osp.join(save_dir, 'args.json')
with open(args_path, 'w') as f:
json.dump(args.__dict__, f, indent=2)
results_xlsx_path = osp.join(save_dir, 'mmbench_result.xlsx')
results_json_path = osp.join(save_dir, 'mmbench_result.json')
dataset = MMBenchDataset(args.data_path)
results = []
n_samples = len(dataset)
per_rank_samples = math.ceil(n_samples / world_size)
per_rank_ids = range(per_rank_samples * rank,
min(n_samples, per_rank_samples * (rank + 1)))
for i in tqdm.tqdm(per_rank_ids, desc=f'Rank {rank}'):
data_sample = dataset[i]
if data_sample['context'] is not None:
text = data_sample['context'] + '\n' + data_sample[
'question'] + '\n' + data_sample['options']
else:
text = data_sample['question'] + '\n' + data_sample['options']
text = DEFAULT_IMAGE_TOKEN + '\n' + text
if is_cn_string(text):
text = text + '请直接回答选项字母。'
else:
text = text + ("Answer with the option's letter from the "
'given choices directly.')
if args.prompt_template:
prompt_text = ''
template = PROMPT_TEMPLATE[args.prompt_template]
prompt_text += template['INSTRUCTION'].format(
input=text, round=1, bot_name=args.bot_name)
else:
prompt_text = text
inputs = prompt_text
image = data_sample['img'].convert('RGB')
image = expand2square(
image, tuple(int(x * 255) for x in image_processor.image_mean))
image = image_processor.preprocess(
image, return_tensors='pt')['pixel_values'][0]
image = image.cuda().unsqueeze(0)
visual_outputs = visual_encoder(image, output_hidden_states=True)
pixel_values = projector(
visual_outputs.hidden_states[args.visual_select_layer][:, 1:])
chunk_encode = []
for idx, chunk in enumerate(inputs.split(DEFAULT_IMAGE_TOKEN)):
if idx == 0:
cur_encode = tokenizer.encode(chunk)
else:
cur_encode = tokenizer.encode(chunk, add_special_tokens=False)
chunk_encode.append(cur_encode)
assert len(chunk_encode) == 2
ids = []
for idx, cur_chunk_encode in enumerate(chunk_encode):
ids.extend(cur_chunk_encode)
if idx != len(chunk_encode) - 1:
ids.append(IMAGE_TOKEN_INDEX)
ids = torch.tensor(ids).cuda().unsqueeze(0)
mm_inputs = prepare_inputs_labels_for_multimodal(
llm=llm, input_ids=ids, pixel_values=pixel_values)
generate_output = llm.generate(
**mm_inputs,
generation_config=gen_config,
streamer=None,
bos_token_id=tokenizer.bos_token_id,
stopping_criteria=stop_criteria)
predict = tokenizer.decode(
generate_output[0], skip_special_tokens=True).strip()
cur_result = {}
cur_result['question'] = data_sample.get('question')
cur_result.update(data_sample.get('options_dict'))
cur_result['prediction'] = predict
if data_sample.get('category') is not None:
cur_result['category'] = data_sample.get('category')
if data_sample.get('l2-category') is not None:
cur_result['l2-category'] = data_sample.get('l2-category')
cur_result['index'] = data_sample.get('index')
cur_result['split'] = data_sample.get('split')
cur_result['answer'] = data_sample.get('answer')
results.append(cur_result)
results = collect_results(results, n_samples)
if get_rank() == 0:
results_df = pd.DataFrame(results)
with pd.ExcelWriter(results_xlsx_path, engine='openpyxl') as writer:
results_df.to_excel(writer, index=False)
if dataset.split == 'dev':
results_dict = dataset.eval_result(results_df, show=True)
with open(results_json_path, 'w') as f:
json.dump(results_dict, f, indent=2)
else:
print('All done!')
if __name__ == '__main__':
main()