File size: 4,945 Bytes
0fc624e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import torch
from PIL import Image
import matplotlib.pyplot as plt
from extract.getim import load_image
from torchvision import transforms
import cv2
import matplotlib.pyplot as plt
transform = transforms.Compose([
transforms.ToTensor(), # 将numpy数组或PIL.Image读的图片转换成(C,H, W)的Tensor格式且/255归一化到[0,1.0]之间
]) # 来自ImageNet的mean和variance
# fcontent = load_image("./ori/0.jpg",transform=None,shape=[512, 256])
def show_cut(path, left, upper, right, lower):
"""
原图与所截区域相比较
:param path: 图片路径
:param left: 区块左上角位置的像素点离图片左边界的距离
:param upper:区块左上角位置的像素点离图片上边界的距离
:param right:区块右下角位置的像素点离图片左边界的距离
:param lower:区块右下角位置的像素点离图片上边界的距离
故需满足:lower > upper、right > left
"""
img = path
# print("This image's size: {}".format(img.size)) # (W, H)
# img.save("kkk.jpg")
# plt.figure("Image Contrast")
#
# plt.subplot(1, 2, 1)
# plt.title('origin')
#
# plt.imshow(img)
# plt.axis('off')
#
# box = (left, upper, right, lower)
# roi = img.crop(box)
#
# plt.subplot(1, 2, 2)
# plt.title('roi')
# plt.imshow(roi)
# plt.axis('off')
# plt.show()
def image_cut_save(path, left, upper, right, lower):
"""
所截区域图片保存
:param path: 图片路径
:param left: 区块左上角位置的像素点离图片左边界的距离
:param upper:区块左上角位置的像素点离图片上边界的距离
:param right:区块右下角位置的像素点离图片左边界的距离
:param lower:区块右下角位置的像素点离图片上边界的距离
故需满足:lower > upper、right > left
:param save_path: 所截图片保存位置
"""
img = path # 打开图像
box = (left, upper, right, lower)
roi = img.crop(box)
# roi.save(save_path)
return transform(roi)
# 保存截取的图片
# def getcontent(fcontent,gap):
# Intgap=gap/9
# a=torch.Tensor()
# for i in range(10):
# pic_path = fcontent
# # pic_save_dir_path = './out2/0-'+str(i)+".jpg"
# left, upper, right, lower = Intgap*i, 0, Intgap*i+gap, gap
# a=torch.cat([a,image_cut_save(pic_path, left, upper, right, lower).unsqueeze(1)],dim=1)
# return a
# def cobtwoten(image_path):
# fcontent = load_image(image_path, transform=None, shape=[512, 256])
# Intgap = 256
# a = torch.Tensor()
# for i in range(2):
# pic_path = fcontent
# #pic_save_dir_path = './out2/0-' + str(i) + ".jpg"
# left, upper, right, lower = Intgap * i, 0, Intgap * i + Intgap, Intgap
# a = torch.cat([a, image_cut_save(pic_path, left, upper, right, lower).unsqueeze(1)], dim=1)
# return a.unsqueeze(0)
def cobtwoten(image_path):
fcontent = load_image(image_path, transform=None, shape=[256, 128])
Intgap = 128/9
a = torch.Tensor()
for i in range(10):
pic_path = fcontent
#pic_save_dir_path = './out2/0-' + str(i) + ".jpg"
left, upper, right, lower = Intgap * i, 0, Intgap * i + 128, 128
a = torch.cat([a, image_cut_save(pic_path, left, upper, right, lower).unsqueeze(1)], dim=1)
return a.unsqueeze(0)
def cobtwoten256(image_path):
fcontent = load_image(image_path, transform=None, shape=[512,256])
Intgap = 256/9
a = torch.Tensor()
for i in range(10):
pic_path = fcontent
#pic_save_dir_path = './out2/0-' + str(i) + ".jpg"
left, upper, right, lower = Intgap * i, 0, Intgap * i + 256, 256
a = torch.cat([a, image_cut_save(pic_path, left, upper, right, lower).unsqueeze(1)], dim=1)
return a.unsqueeze(0)
#
# fcontent = load_image("./extract/image/0.jpg",transform=None,shape=[256,128])
# Intgap = 128
# a = torch.Tensor()
# for i in range(2):
# pic_path = fcontent
# pic_save_dir_path = './out2/0-'+str(i)+".jpg"
# left, upper, right, lower = Intgap * i, 0, Intgap * i + 128, 128
# a = torch.cat([a, image_cut_save(pic_path, left, upper, right, lower,pic_save_dir_path).unsqueeze(1)], dim=1)
# print(a.shape)
import numpy as np
def imgsave(image, path):
image = image.squeeze(0)
image = image.permute(1, 2, 0)
image_np = image.cpu().numpy()*255
image_np = image_np.astype(np.uint8)
Image.fromarray(image_np).save(path) # 直接保存PIL图像对象
# lik=["0"]
# for name in lik:
# videos=cobtwoten("./extract/image/0.jpg").permute(0, 2, 1, 3, 4)
# print(videos.shape)
# for i in range(10):
# frame = videos[:, i, :, :]
# imgsave(frame, "./out2/"+str(i)+".jpg") |