{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f30b4512170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f30b4502840>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685017344637936610, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVCQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMay9ob21lL3N0ZXBoZW4vbWluaWNvbmRhMy9lbnZzL2RlZXAtcmwtY291cnNlL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxrL2hvbWUvc3RlcGhlbi9taW5pY29uZGEzL2VudnMvZGVlcC1ybC1jb3Vyc2UvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA88PBPlsQNbtXGww/88PBPlsQNbtXGww/88PBPlsQNbtXGww/88PBPlsQNbtXGww/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbKLMP8um2b9Cl4o/NACdPsz0Vj9VBh8+FrvSP3uJAT8njG2+OeUMPw+cEj9eP5S+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADzw8E+WxA1u1cbDD/ItbS7psTyuXKdHLzzw8E+WxA1u1cbDD/ItbS7psTyuXKdHLzzw8E+WxA1u1cbDD/ItbS7psTyuXKdHLzzw8E+WxA1u1cbDD/ItbS7psTyuXKdHLyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.3784481 -0.00276282 0.5472922 ]\n [ 0.3784481 -0.00276282 0.5472922 ]\n [ 0.3784481 -0.00276282 0.5472922 ]\n [ 0.3784481 -0.00276282 0.5472922 ]]", "desired_goal": "[[ 1.5987067 -1.7004026 1.082741 ]\n [ 0.30664217 0.8396728 0.15529759]\n [ 1.6463344 0.50600404 -0.23197995]\n [ 0.55037266 0.57269377 -0.28954595]]", "observation": "[[ 3.7844810e-01 -2.7628157e-03 5.4729217e-01 -5.5148341e-03\n -4.6304351e-04 -9.5590223e-03]\n [ 3.7844810e-01 -2.7628157e-03 5.4729217e-01 -5.5148341e-03\n -4.6304351e-04 -9.5590223e-03]\n [ 3.7844810e-01 -2.7628157e-03 5.4729217e-01 -5.5148341e-03\n -4.6304351e-04 -9.5590223e-03]\n [ 3.7844810e-01 -2.7628157e-03 5.4729217e-01 -5.5148341e-03\n -4.6304351e-04 -9.5590223e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1Yi5PZ3hB755V4E+UNX6PZZUAj5EaGQ+lanwPaozQL0B45c+cw4LvVlqh73C0So+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.09059302 -0.13269658 0.2526205 ]\n [ 0.12247717 0.1272758 0.22305399]\n [ 0.11751095 -0.04692427 0.29665378]\n [-0.03394933 -0.06612081 0.16681579]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8umxLQPO0b+UhpRSlIwBbJRLMowBdJRHQJWzr0g8r7R1fZQoaAZoCWgPQwiOzvkpjsPwv5SGlFKUaBVLMmgWR0CVs3BtDUmVdX2UKGgGaAloD0MI76gxIeYS4L+UhpRSlGgVSzJoFkdAlbMrwjMV13V9lChoBmgJaA9DCJXXSuguieC/lIaUUpRoFUsyaBZHQJWy6Dyvs7d1fZQoaAZoCWgPQwjOqWQAqGLzv5SGlFKUaBVLMmgWR0CVtMvoNd7fdX2UKGgGaAloD0MIEvWCT3My8r+UhpRSlGgVSzJoFkdAlbSNFz+3pnV9lChoBmgJaA9DCPj6Wpcaod+/lIaUUpRoFUsyaBZHQJW0SGwiaAp1fZQoaAZoCWgPQwgGY0Si0LLrv5SGlFKUaBVLMmgWR0CVtATibUgCdX2UKGgGaAloD0MIg+Dx7V0D5r+UhpRSlGgVSzJoFkdAlbXuAd4mkXV9lChoBmgJaA9DCIPb2sLz0vW/lIaUUpRoFUsyaBZHQJW1rzZpSJl1fZQoaAZoCWgPQwisrG2Kx0Xsv5SGlFKUaBVLMmgWR0CVtWpqASWadX2UKGgGaAloD0MIqyUd5WC27b+UhpRSlGgVSzJoFkdAlbUmvGIbfnV9lChoBmgJaA9DCNfZkH9mEN2/lIaUUpRoFUsyaBZHQJW3N8a4tpV1fZQoaAZoCWgPQwjs20lE+Bfnv5SGlFKUaBVLMmgWR0CVtvj1wo9cdX2UKGgGaAloD0MID2Q9tfpq57+UhpRSlGgVSzJoFkdAlba1NlAeJnV9lChoBmgJaA9DCHL6er5mOeu/lIaUUpRoFUsyaBZHQJW2cbp/wy91fZQoaAZoCWgPQwgUJSGRtnHkv5SGlFKUaBVLMmgWR0CVuGpdKNADdX2UKGgGaAloD0MINrBVgsXh27+UhpRSlGgVSzJoFkdAlbgrnX/YJ3V9lChoBmgJaA9DCHJvfsNEg96/lIaUUpRoFUsyaBZHQJW35ul41P51fZQoaAZoCWgPQwgYzF8hc2Xrv5SGlFKUaBVLMmgWR0CVt6NIbwSbdX2UKGgGaAloD0MInBpoPudu1r+UhpRSlGgVSzJoFkdAlbmgeeWfLHV9lChoBmgJaA9DCOz5muWy0eW/lIaUUpRoFUsyaBZHQJW5YbkwN9Z1fZQoaAZoCWgPQwiRnEzcKgjvv5SGlFKUaBVLMmgWR0CVuR0OVgQZdX2UKGgGaAloD0MI/KiG/Z5Y1b+UhpRSlGgVSzJoFkdAlbjZiAlOXXV9lChoBmgJaA9DCNLFppVCoOa/lIaUUpRoFUsyaBZHQJW6xwtJ4B51fZQoaAZoCWgPQwjEzhQ6r7Hpv5SGlFKUaBVLMmgWR0CVuohl18sudX2UKGgGaAloD0MI2xg74SW46r+UhpRSlGgVSzJoFkdAlbpDxLCemXV9lChoBmgJaA9DCAAbECGunOG/lIaUUpRoFUsyaBZHQJW6AGpuMuR1fZQoaAZoCWgPQwjOpiOAm0Xpv5SGlFKUaBVLMmgWR0CVu/MzuWrwdX2UKGgGaAloD0MI8WQ3M/rR1b+UhpRSlGgVSzJoFkdAlbu0XLvCuXV9lChoBmgJaA9DCHE7NCxGXdq/lIaUUpRoFUsyaBZHQJW7b6rNnoR1fZQoaAZoCWgPQwjUYBqGj4jdv5SGlFKUaBVLMmgWR0CVuywpvxYrdX2UKGgGaAloD0MIbFuU2SAT7b+UhpRSlGgVSzJoFkdAlb0UgKWszXV9lChoBmgJaA9DCOdTxyql5+C/lIaUUpRoFUsyaBZHQJW81adMCcR1fZQoaAZoCWgPQwjfUs4Xe6/nv5SGlFKUaBVLMmgWR0CVvJD28IzFdX2UKGgGaAloD0MIyTmxh/ax27+UhpRSlGgVSzJoFkdAlbxNbHIZInV9lChoBmgJaA9DCHWxaaUQSOu/lIaUUpRoFUsyaBZHQJW+M5uIhyN1fZQoaAZoCWgPQwi9j6M5svLmv5SGlFKUaBVLMmgWR0CVvfTPBzmwdX2UKGgGaAloD0MICrsoeuDj4r+UhpRSlGgVSzJoFkdAlb2wJHAh0XV9lChoBmgJaA9DCPJ8BtSbUea/lIaUUpRoFUsyaBZHQJW9bJ7sv7F1fZQoaAZoCWgPQwh7ZkmAmpryv5SGlFKUaBVLMmgWR0CVv2ITGo73dX2UKGgGaAloD0MI3o0FhUEZ6b+UhpRSlGgVSzJoFkdAlb8jQzDXOHV9lChoBmgJaA9DCIFfI0kQrsy/lIaUUpRoFUsyaBZHQJW+3qSowVV1fZQoaAZoCWgPQwgc0T3rGq3gv5SGlFKUaBVLMmgWR0CVvpslb/wRdX2UKGgGaAloD0MI+THmriXk5L+UhpRSlGgVSzJoFkdAlcCGO2iL23V9lChoBmgJaA9DCGgJMgIqHN+/lIaUUpRoFUsyaBZHQJXAR3gUDdR1fZQoaAZoCWgPQwjaHVIMkOjkv5SGlFKUaBVLMmgWR0CVwALb5/LDdX2UKGgGaAloD0MIxEMYP4374r+UhpRSlGgVSzJoFkdAlb+/apPykXV9lChoBmgJaA9DCPW52or9Zd6/lIaUUpRoFUsyaBZHQJXBrFo+Ofd1fZQoaAZoCWgPQwhJS+XtCCfgv5SGlFKUaBVLMmgWR0CVwW2G7BfsdX2UKGgGaAloD0MIURGnk2x14L+UhpRSlGgVSzJoFkdAlcEo0/GEPHV9lChoBmgJaA9DCPQ2NjtS/eO/lIaUUpRoFUsyaBZHQJXA5UCJXQt1fZQoaAZoCWgPQwja5sb0hKXgv5SGlFKUaBVLMmgWR0CVwu/pt78fdX2UKGgGaAloD0MIuECC4seY2b+UhpRSlGgVSzJoFkdAlcKxHCoCMnV9lChoBmgJaA9DCMRafAqA8da/lIaUUpRoFUsyaBZHQJXCbGZNO/N1fZQoaAZoCWgPQwgwurw5XKvkv5SGlFKUaBVLMmgWR0CVwimgam4zdX2UKGgGaAloD0MIzJiCNc4m6b+UhpRSlGgVSzJoFkdAlcQi+De0onV9lChoBmgJaA9DCMXGvI44ZN+/lIaUUpRoFUsyaBZHQJXD5Eb5uZV1fZQoaAZoCWgPQwj7Xdiarbzlv5SGlFKUaBVLMmgWR0CVw5+m3vx6dX2UKGgGaAloD0MIRfZBlgUT4L+UhpRSlGgVSzJoFkdAlcNcPvrnknV9lChoBmgJaA9DCBg+IqZEkuG/lIaUUpRoFUsyaBZHQJXFRzFMqSZ1fZQoaAZoCWgPQwgMPPceLjnqv5SGlFKUaBVLMmgWR0CVxQhVlwtKdX2UKGgGaAloD0MIPgYrTrWW6r+UhpRSlGgVSzJoFkdAlcTDtPYWcnV9lChoBmgJaA9DCOsaLQd6qPS/lIaUUpRoFUsyaBZHQJXEgDU3GXJ1fZQoaAZoCWgPQwh4DfrS2x/nv5SGlFKUaBVLMmgWR0CVxmotL+PzdX2UKGgGaAloD0MIUG1wIvo14L+UhpRSlGgVSzJoFkdAlcYrX6InB3V9lChoBmgJaA9DCHwNwXEZt+q/lIaUUpRoFUsyaBZHQJXF5rEcbR51fZQoaAZoCWgPQwhaZ3xfXCrhv5SGlFKUaBVLMmgWR0CVxaMz/IbPdX2UKGgGaAloD0MIY5eo3hpY47+UhpRSlGgVSzJoFkdAlceX003wTnV9lChoBmgJaA9DCEBPAwZJn9O/lIaUUpRoFUsyaBZHQJXHWRoysS11fZQoaAZoCWgPQwjopWJjXsfjv5SGlFKUaBVLMmgWR0CVxxR3/xUedX2UKGgGaAloD0MICRoziXrB17+UhpRSlGgVSzJoFkdAlcbRBE8aGnV9lChoBmgJaA9DCK5hhsYTQeS/lIaUUpRoFUsyaBZHQJXIz2oNutR1fZQoaAZoCWgPQwhmogip21ngv5SGlFKUaBVLMmgWR0CVyJCZnctYdX2UKGgGaAloD0MI7e9sj97w4r+UhpRSlGgVSzJoFkdAlchL7CSA6XV9lChoBmgJaA9DCAH5Eio4vOK/lIaUUpRoFUsyaBZHQJXICLBKtgd1fZQoaAZoCWgPQwg+527XS1Piv5SGlFKUaBVLMmgWR0CVyhf7rLQpdX2UKGgGaAloD0MIeXWOAdlr5L+UhpRSlGgVSzJoFkdAlcnZGrjo6nV9lChoBmgJaA9DCCU7NgLxuuu/lIaUUpRoFUsyaBZHQJXJlGgBcRl1fZQoaAZoCWgPQwhAL9y5MNLlv5SGlFKUaBVLMmgWR0CVyVDqnm7rdX2UKGgGaAloD0MImpfD7juG67+UhpRSlGgVSzJoFkdAlcs5Jf6XSnV9lChoBmgJaA9DCPZ5jPLMS+G/lIaUUpRoFUsyaBZHQJXK+l1r6+F1fZQoaAZoCWgPQwgc6ndhazbov5SGlFKUaBVLMmgWR0CVyrWfbsWwdX2UKGgGaAloD0MIUtUEUfcB57+UhpRSlGgVSzJoFkdAlcpyFGoaUHV9lChoBmgJaA9DCKaAtP8BVuS/lIaUUpRoFUsyaBZHQJXMgODrZ8N1fZQoaAZoCWgPQwjv42iOrHzgv5SGlFKUaBVLMmgWR0CVzEIZqEeydX2UKGgGaAloD0MIf74tWKoL3b+UhpRSlGgVSzJoFkdAlcv9cSoOx3V9lChoBmgJaA9DCG4T7pV5q9S/lIaUUpRoFUsyaBZHQJXLuhCdBjZ1fZQoaAZoCWgPQwgt6SgHswnKv5SGlFKUaBVLMmgWR0CVzbtZFG5MdX2UKGgGaAloD0MIi415HXFI4r+UhpRSlGgVSzJoFkdAlc18zdk8R3V9lChoBmgJaA9DCLlwICQLmMy/lIaUUpRoFUsyaBZHQJXNOCyyD7J1fZQoaAZoCWgPQwgWTWcng6PUv5SGlFKUaBVLMmgWR0CVzPS2phnbdX2UKGgGaAloD0MIogp/hjfr4L+UhpRSlGgVSzJoFkdAlc8PATIvJ3V9lChoBmgJaA9DCANEwYwpWNu/lIaUUpRoFUsyaBZHQJXO0GxD9fl1fZQoaAZoCWgPQwiRDg9h/LTqv5SGlFKUaBVLMmgWR0CVzovnr6cidX2UKGgGaAloD0MIe0/ltKfk1b+UhpRSlGgVSzJoFkdAlc5Id+5OJ3V9lChoBmgJaA9DCFad1QJ7TNm/lIaUUpRoFUsyaBZHQJXQX0Eovzx1fZQoaAZoCWgPQwixTSoaa3/nv5SGlFKUaBVLMmgWR0CV0CCROk+HdX2UKGgGaAloD0MI9yFvufqx47+UhpRSlGgVSzJoFkdAlc/b7j1f3XV9lChoBmgJaA9DCHo1QGmoUem/lIaUUpRoFUsyaBZHQJXPmIHkcS51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.0-71-generic-x86_64-with-glibc2.31 # 78~20.04.1-Ubuntu SMP Wed Apr 19 11:26:48 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.2", "Gym": "0.21.0"}} |