StefanoCaloni commited on
Commit
7a2647b
·
1 Parent(s): 7c2d222

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.12 +/- 0.08
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81dd5e7a5ff10936feb46930affd20a8145d1bd140704b526fe983d4191a704b
3
+ size 106951
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7d4fc41a2dd0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7d4fc4194080>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1694366407133216507,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAz5t7PuEa1rldu+Q+7xBcvsrY2z7W2QI9z5t7PuEa1rldu+Q+gib8vXzn2j6uETi+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAlkbLPzXYXzx9mtc/zFBtvQlpkz+2wKI+AKexP1VjOL4Iiqm/jyLEvfH0Ij9Od9W+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADPm3s+4RrWuV275D47O/Y+CvGCuwMOwz7vEFy+ytjbPtbZAj0xQDm/7jvYPzlk2r7Pm3s+4RrWuV275D47O/Y+CvGCuwMOwz6CJvy9fOfaPq4ROL6VM/W/4QDSP1TAsr+UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[ 2.4571155e-01 -4.0837287e-04 4.4674197e-01]\n [-2.1490835e-01 4.2938834e-01 3.1946026e-02]\n [ 2.4571155e-01 -4.0837287e-04 4.4674197e-01]\n [-1.2312032e-01 4.2754734e-01 -1.7975494e-01]]",
34
+ "desired_goal": "[[ 1.5880916 0.01366239 1.6844021 ]\n [-0.05793838 1.1516429 0.31787652]\n [ 1.3879089 -0.18006642 -1.3245249 ]\n [-0.09576904 0.63655 -0.41692585]]",
35
+ "observation": "[[ 2.4571155e-01 -4.0837287e-04 4.4674197e-01 4.8092064e-01\n -3.9960193e-03 3.8096628e-01]\n [-2.1490835e-01 4.2938834e-01 3.1946026e-02 -7.2363573e-01\n 1.6893289e+00 -4.2654589e-01]\n [ 2.4571155e-01 -4.0837287e-04 4.4674197e-01 4.8092064e-01\n -3.9960193e-03 3.8096628e-01]\n [-1.2312032e-01 4.2754734e-01 -1.7975494e-01 -1.9156367e+00\n 1.6406518e+00 -1.3964944e+00]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAgyV6PQad4zwGtkQ+i6iPvcWvEr59FQo+TvGQPb8Nhj1Huzs+sf/uPDo/6L2QwkU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[ 0.06107093 0.02778484 0.19210061]\n [-0.07014569 -0.14324863 0.1348476 ]\n [ 0.07077275 0.06545591 0.1833316 ]\n [ 0.02917466 -0.11340185 0.19312501]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9DMSsbNr0uMAWyUSwOMAXSUR0Cmwocp1A7gdX2UKGgGR7/ftRNyo4uLaAdLBGgIR0Cmwg9m6GxmdX2UKGgGR7/L0mMOwxFiaAdLA2gIR0Cmwwe2VmjCdX2UKGgGR7+70HyEtdzGaAdLAmgIR0CmwxMeXAuadX2UKGgGR7/IIY3vQWvbaAdLA2gIR0CmwpeBQN1AdX2UKGgGR7/kCL2pQ1rJaAdLCGgIR0CmwbVJlJ6IdX2UKGgGR7+KwUxmCiAUaAdLAWgIR0Cmwpw+lj3FdX2UKGgGR7/cde6Zpi7TaAdLBGgIR0CmwiSPuG9IdX2UKGgGR7/NTm4iHIp6aAdLA2gIR0CmwyLTQVsUdX2UKGgGR7/P9hqj8DSxaAdLA2gIR0CmwcUkOZssdX2UKGgGR7/NNMXaakRBaAdLA2gIR0Cmwqv0AcT8dX2UKGgGR7/M287IT4+KaAdLA2gIR0CmwjSBshxHdX2UKGgGR7+oz+FUQ04zaAdLAWgIR0Cmwcnz6JqJdX2UKGgGR7+hBzFMqSX/aAdLAWgIR0CmwdDCpFTedX2UKGgGR7/UDLKV6eGxaAdLA2gIR0CmwzNrKvFFdX2UKGgGR7/PjQzDXOGCaAdLA2gIR0Cmwru6d1+zdX2UKGgGR7+/Xbuc+aBqaAdLAmgIR0Cmwdk078vVdX2UKGgGR7/X+6iCaqjraAdLBGgIR0CmwkgeA/cGdX2UKGgGR7/OLncL0BfbaAdLA2gIR0Cmw0A13t8edX2UKGgGR7++wxFiKBNFaAdLAmgIR0CmwsSAH3UQdX2UKGgGR7/BXwLE1l5GaAdLAmgIR0CmwlLcTJyRdX2UKGgGR7/Spobn5i3HaAdLA2gIR0Cmwehhpg1FdX2UKGgGR7+llI3BHkLhaAdLAWgIR0Cmwez8YQ8PdX2UKGgGR7/KH4XXRPXTaAdLA2gIR0Cmw1AG8mKJdX2UKGgGR7/R6XjU/fO2aAdLBGgIR0CmwtmFajesdX2UKGgGR7/U3np0OmSAaAdLBGgIR0CmwmbBoEjgdX2UKGgGR7/Lr6ciGFi8aAdLA2gIR0CmwfxGUfPpdX2UKGgGR7/M7hegL7XQaAdLA2gIR0Cmw2FOGj9GdX2UKGgGR7+/dSEUTL4faAdLAmgIR0CmwuW4NI9UdX2UKGgGR7/AILw4KhL5aAdLAmgIR0Cmwu44yXUpdX2UKGgGR7/LmTTvy9VWaAdLA2gIR0CmwgwF9roGdX2UKGgGR7/TuVHFxXGPaAdLA2gIR0Cmw28BMi8ndX2UKGgGR7/VdlNDc/MXaAdLBGgIR0CmwnuYhMakdX2UKGgGR7+A6hg3Lmp3aAdLAWgIR0Cmw3On2qT9dX2UKGgGR7/HBacI7eVLaAdLA2gIR0Cmwv4igTRIdX2UKGgGR7+/Cl7+kxh2aAdLAmgIR0Cmw35G8VYZdX2UKGgGR7/Uo/zJ6po9aAdLBGgIR0CmwiCMglnidX2UKGgGR7/WXpGFzuF6aAdLBGgIR0Cmwo/rrxAjdX2UKGgGR7/Mmce8wpOOaAdLA2gIR0CmwwyGJvYOdX2UKGgGR7/BtrKvFFUiaAdLAmgIR0Cmwio+GGmDdX2UKGgGR7/LsHB1s+FDaAdLA2gIR0Cmw40KJEYwdX2UKGgGR7+524d6sySFaAdLAmgIR0Cmwpl3Y+SsdX2UKGgGR7+0EZBLPD51aAdLAmgIR0CmwxkvCdjHdX2UKGgGR7+4OQQtjCpFaAdLAmgIR0Cmwjb3XZoPdX2UKGgGR7/Qwco6S1VpaAdLA2gIR0Cmw55/smfHdX2UKGgGR7/PA2Q4jrzHaAdLA2gIR0CmwqsZxaPkdX2UKGgGR7/OL2HtWuHOaAdLA2gIR0CmwygjyFwldX2UKGgGR7/Kb1AZ88cNaAdLA2gIR0CmwkYYR/VidX2UKGgGR7+QTRIBikO7aAdLAWgIR0Cmwy6Zx7zDdX2UKGgGR7/HzU7Sy+pPaAdLA2gIR0Cmwr4QJ5VwdX2UKGgGR7/Z6d1+y7f6aAdLBGgIR0Cmw7au4gA7dX2UKGgGR7/VEwnH/95yaAdLA2gIR0Cmwz9qcmShdX2UKGgGR7/WrLhaTwDvaAdLBGgIR0Cmwl0IsyzpdX2UKGgGR7/L3A2ycCo1aAdLA2gIR0Cmw8Pi1iOOdX2UKGgGR7/WqXF98Z1naAdLBGgIR0CmwtCHZbpvdX2UKGgGR7/NP1tfoicHaAdLA2gIR0Cmw0/kWAPNdX2UKGgGR7/TLcKw6hg3aAdLA2gIR0Cmwm2ZRbbDdX2UKGgGR7+nEsJ6Y3NtaAdLAWgIR0Cmw1SsbNr1dX2UKGgGR7+4iNbTtsvaaAdLAmgIR0Cmwtz+WGATdX2UKGgGR7/JTqjafzz3aAdLA2gIR0Cmw9Vs+FDfdX2UKGgGR7/AUs4DLbHqaAdLAmgIR0CmwndRR/EwdX2UKGgGR7++uU2UB4lhaAdLAmgIR0Cmw15pztCzdX2UKGgGR7+5GXokiUxEaAdLAmgIR0CmwubYsd1ddX2UKGgGR7/BjXnQpnYhaAdLAmgIR0Cmw98+JP69dX2UKGgGR7+z/Nqxkd3jaAdLAmgIR0Cmw2p6IFeOdX2UKGgGR7/AzKLbYbsGaAdLAmgIR0CmwvLf1pTNdX2UKGgGR7/LJMg2ZRbbaAdLA2gIR0CmwoiuU2UCdX2UKGgGR7+4MZxaPjn3aAdLAmgIR0CmwpLNW2gGdX2UKGgGR7/URQ79ycTbaAdLBGgIR0Cmw/YOMERrdX2UKGgGR7/VhaTwDvE1aAdLA2gIR0Cmw3p/5LyudX2UKGgGR7/KClrM1TBJaAdLA2gIR0CmwwLGaQV9dX2UKGgGR7+WcOLBKtgbaAdLAWgIR0Cmwphib2DhdX2UKGgGR7+ygK4QSSNgaAdLAmgIR0CmwqOBMBZIdX2UKGgGR7/PlA/s3Q2NaAdLA2gIR0CmxAZ5qubJdX2UKGgGR7/QMlkYoAn2aAdLA2gIR0Cmw4rlvIfbdX2UKGgGR7/W/KQq7ROUaAdLBGgIR0CmwxeS8rZrdX2UKGgGR7/AaJAMUh3aaAdLAmgIR0Cmwq0Wl/H6dX2UKGgGR7/BLdvbXYlIaAdLAmgIR0CmxA/qxC6ZdX2UKGgGR7/FBBRhttQ9aAdLA2gIR0Cmw5iRfWtmdX2UKGgGR7+3ppvgm7aqaAdLAmgIR0CmwrY8uBczdX2UKGgGR7/BeiSJTER8aAdLAmgIR0CmxB4HgP3BdX2UKGgGR7/QYG+sYEW7aAdLA2gIR0CmwyuuRs/IdX2UKGgGR7/CaDwpe/pMaAdLAmgIR0CmwsX5vcagdX2UKGgGR7/VZnctXgccaAdLA2gIR0Cmw60oScsldX2UKGgGR7/TeEZiuuA7aAdLA2gIR0CmxC2n0kGBdX2UKGgGR7/GPI4lyBClaAdLA2gIR0Cmwzoqbz9TdX2UKGgGR7/VF/hESdvsaAdLA2gIR0Cmw72KMvRJdX2UKGgGR7/FxOLzf779aAdLA2gIR0CmxD3pW3jNdX2UKGgGR7/SHoHLRrrPaAdLA2gIR0Cmw0phnanKdX2UKGgGR7/LpyIYWLxaaAdLA2gIR0Cmw8uc+aBqdX2UKGgGR7/SSLZSNwR5aAdLA2gIR0CmxEwPqcEvdX2UKGgGR7/LRb8m8dxRaAdLA2gIR0Cmw1h86V+rdX2UKGgGR7/mYjrzGxUvaAdLCWgIR0CmwvS0jTrndX2UKGgGR7+fIGQjlgc+aAdLAWgIR0CmwvkdFOO9dX2UKGgGR7/Ih4+r2g3+aAdLA2gIR0CmxFvV/c33dX2UKGgGR7/QlU6xPfsNaAdLA2gIR0Cmw2gvL5h0dX2UKGgGR7/XCiAUcn3MaAdLBWgIR0Cmw+TpHI6sdX2UKGgGR7+wofCAMDwIaAdLAmgIR0CmwwKJVKf4dX2UKGgGR7+61fE4vN/waAdLAmgIR0CmxGVRDTjOdX2UKGgGR7/AnhsImgJ1aAdLAmgIR0Cmw3Gnfl6rdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a006f1f997ba61e96105be12bac72df4ee442095c0be303897774979c906181e
3
+ size 44734
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90081d4825c14dd5d742b1db64e65caa0309bdddc01994ab341fbafed21d6c85
3
+ size 46014
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7d4fc41a2dd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d4fc4194080>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694366407133216507, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAz5t7PuEa1rldu+Q+7xBcvsrY2z7W2QI9z5t7PuEa1rldu+Q+gib8vXzn2j6uETi+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAlkbLPzXYXzx9mtc/zFBtvQlpkz+2wKI+AKexP1VjOL4Iiqm/jyLEvfH0Ij9Od9W+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADPm3s+4RrWuV275D47O/Y+CvGCuwMOwz7vEFy+ytjbPtbZAj0xQDm/7jvYPzlk2r7Pm3s+4RrWuV275D47O/Y+CvGCuwMOwz6CJvy9fOfaPq4ROL6VM/W/4QDSP1TAsr+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 2.4571155e-01 -4.0837287e-04 4.4674197e-01]\n [-2.1490835e-01 4.2938834e-01 3.1946026e-02]\n [ 2.4571155e-01 -4.0837287e-04 4.4674197e-01]\n [-1.2312032e-01 4.2754734e-01 -1.7975494e-01]]", "desired_goal": "[[ 1.5880916 0.01366239 1.6844021 ]\n [-0.05793838 1.1516429 0.31787652]\n [ 1.3879089 -0.18006642 -1.3245249 ]\n [-0.09576904 0.63655 -0.41692585]]", "observation": "[[ 2.4571155e-01 -4.0837287e-04 4.4674197e-01 4.8092064e-01\n -3.9960193e-03 3.8096628e-01]\n [-2.1490835e-01 4.2938834e-01 3.1946026e-02 -7.2363573e-01\n 1.6893289e+00 -4.2654589e-01]\n [ 2.4571155e-01 -4.0837287e-04 4.4674197e-01 4.8092064e-01\n -3.9960193e-03 3.8096628e-01]\n [-1.2312032e-01 4.2754734e-01 -1.7975494e-01 -1.9156367e+00\n 1.6406518e+00 -1.3964944e+00]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAgyV6PQad4zwGtkQ+i6iPvcWvEr59FQo+TvGQPb8Nhj1Huzs+sf/uPDo/6L2QwkU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.06107093 0.02778484 0.19210061]\n [-0.07014569 -0.14324863 0.1348476 ]\n [ 0.07077275 0.06545591 0.1833316 ]\n [ 0.02917466 -0.11340185 0.19312501]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9DMSsbNr0uMAWyUSwOMAXSUR0Cmwocp1A7gdX2UKGgGR7/ftRNyo4uLaAdLBGgIR0Cmwg9m6GxmdX2UKGgGR7/L0mMOwxFiaAdLA2gIR0Cmwwe2VmjCdX2UKGgGR7+70HyEtdzGaAdLAmgIR0CmwxMeXAuadX2UKGgGR7/IIY3vQWvbaAdLA2gIR0CmwpeBQN1AdX2UKGgGR7/kCL2pQ1rJaAdLCGgIR0CmwbVJlJ6IdX2UKGgGR7+KwUxmCiAUaAdLAWgIR0Cmwpw+lj3FdX2UKGgGR7/cde6Zpi7TaAdLBGgIR0CmwiSPuG9IdX2UKGgGR7/NTm4iHIp6aAdLA2gIR0CmwyLTQVsUdX2UKGgGR7/P9hqj8DSxaAdLA2gIR0CmwcUkOZssdX2UKGgGR7/NNMXaakRBaAdLA2gIR0Cmwqv0AcT8dX2UKGgGR7/M287IT4+KaAdLA2gIR0CmwjSBshxHdX2UKGgGR7+oz+FUQ04zaAdLAWgIR0Cmwcnz6JqJdX2UKGgGR7+hBzFMqSX/aAdLAWgIR0CmwdDCpFTedX2UKGgGR7/UDLKV6eGxaAdLA2gIR0CmwzNrKvFFdX2UKGgGR7/PjQzDXOGCaAdLA2gIR0Cmwru6d1+zdX2UKGgGR7+/Xbuc+aBqaAdLAmgIR0Cmwdk078vVdX2UKGgGR7/X+6iCaqjraAdLBGgIR0CmwkgeA/cGdX2UKGgGR7/OLncL0BfbaAdLA2gIR0Cmw0A13t8edX2UKGgGR7++wxFiKBNFaAdLAmgIR0CmwsSAH3UQdX2UKGgGR7/BXwLE1l5GaAdLAmgIR0CmwlLcTJyRdX2UKGgGR7/Spobn5i3HaAdLA2gIR0Cmwehhpg1FdX2UKGgGR7+llI3BHkLhaAdLAWgIR0Cmwez8YQ8PdX2UKGgGR7/KH4XXRPXTaAdLA2gIR0Cmw1AG8mKJdX2UKGgGR7/R6XjU/fO2aAdLBGgIR0CmwtmFajesdX2UKGgGR7/U3np0OmSAaAdLBGgIR0CmwmbBoEjgdX2UKGgGR7/Lr6ciGFi8aAdLA2gIR0CmwfxGUfPpdX2UKGgGR7/M7hegL7XQaAdLA2gIR0Cmw2FOGj9GdX2UKGgGR7+/dSEUTL4faAdLAmgIR0CmwuW4NI9UdX2UKGgGR7/AILw4KhL5aAdLAmgIR0Cmwu44yXUpdX2UKGgGR7/LmTTvy9VWaAdLA2gIR0CmwgwF9roGdX2UKGgGR7/TuVHFxXGPaAdLA2gIR0Cmw28BMi8ndX2UKGgGR7/VdlNDc/MXaAdLBGgIR0CmwnuYhMakdX2UKGgGR7+A6hg3Lmp3aAdLAWgIR0Cmw3On2qT9dX2UKGgGR7/HBacI7eVLaAdLA2gIR0Cmwv4igTRIdX2UKGgGR7+/Cl7+kxh2aAdLAmgIR0Cmw35G8VYZdX2UKGgGR7/Uo/zJ6po9aAdLBGgIR0CmwiCMglnidX2UKGgGR7/WXpGFzuF6aAdLBGgIR0Cmwo/rrxAjdX2UKGgGR7/Mmce8wpOOaAdLA2gIR0CmwwyGJvYOdX2UKGgGR7/BtrKvFFUiaAdLAmgIR0Cmwio+GGmDdX2UKGgGR7/LsHB1s+FDaAdLA2gIR0Cmw40KJEYwdX2UKGgGR7+524d6sySFaAdLAmgIR0Cmwpl3Y+SsdX2UKGgGR7+0EZBLPD51aAdLAmgIR0CmwxkvCdjHdX2UKGgGR7+4OQQtjCpFaAdLAmgIR0Cmwjb3XZoPdX2UKGgGR7/Qwco6S1VpaAdLA2gIR0Cmw55/smfHdX2UKGgGR7/PA2Q4jrzHaAdLA2gIR0CmwqsZxaPkdX2UKGgGR7/OL2HtWuHOaAdLA2gIR0CmwygjyFwldX2UKGgGR7/Kb1AZ88cNaAdLA2gIR0CmwkYYR/VidX2UKGgGR7+QTRIBikO7aAdLAWgIR0Cmwy6Zx7zDdX2UKGgGR7/HzU7Sy+pPaAdLA2gIR0Cmwr4QJ5VwdX2UKGgGR7/Z6d1+y7f6aAdLBGgIR0Cmw7au4gA7dX2UKGgGR7/VEwnH/95yaAdLA2gIR0Cmwz9qcmShdX2UKGgGR7/WrLhaTwDvaAdLBGgIR0Cmwl0IsyzpdX2UKGgGR7/L3A2ycCo1aAdLA2gIR0Cmw8Pi1iOOdX2UKGgGR7/WqXF98Z1naAdLBGgIR0CmwtCHZbpvdX2UKGgGR7/NP1tfoicHaAdLA2gIR0Cmw0/kWAPNdX2UKGgGR7/TLcKw6hg3aAdLA2gIR0Cmwm2ZRbbDdX2UKGgGR7+nEsJ6Y3NtaAdLAWgIR0Cmw1SsbNr1dX2UKGgGR7+4iNbTtsvaaAdLAmgIR0Cmwtz+WGATdX2UKGgGR7/JTqjafzz3aAdLA2gIR0Cmw9Vs+FDfdX2UKGgGR7/AUs4DLbHqaAdLAmgIR0CmwndRR/EwdX2UKGgGR7++uU2UB4lhaAdLAmgIR0Cmw15pztCzdX2UKGgGR7+5GXokiUxEaAdLAmgIR0CmwubYsd1ddX2UKGgGR7/BjXnQpnYhaAdLAmgIR0Cmw98+JP69dX2UKGgGR7+z/Nqxkd3jaAdLAmgIR0Cmw2p6IFeOdX2UKGgGR7/AzKLbYbsGaAdLAmgIR0CmwvLf1pTNdX2UKGgGR7/LJMg2ZRbbaAdLA2gIR0CmwoiuU2UCdX2UKGgGR7+4MZxaPjn3aAdLAmgIR0CmwpLNW2gGdX2UKGgGR7/URQ79ycTbaAdLBGgIR0Cmw/YOMERrdX2UKGgGR7/VhaTwDvE1aAdLA2gIR0Cmw3p/5LyudX2UKGgGR7/KClrM1TBJaAdLA2gIR0CmwwLGaQV9dX2UKGgGR7+WcOLBKtgbaAdLAWgIR0Cmwphib2DhdX2UKGgGR7+ygK4QSSNgaAdLAmgIR0CmwqOBMBZIdX2UKGgGR7/PlA/s3Q2NaAdLA2gIR0CmxAZ5qubJdX2UKGgGR7/QMlkYoAn2aAdLA2gIR0Cmw4rlvIfbdX2UKGgGR7/W/KQq7ROUaAdLBGgIR0CmwxeS8rZrdX2UKGgGR7/AaJAMUh3aaAdLAmgIR0Cmwq0Wl/H6dX2UKGgGR7/BLdvbXYlIaAdLAmgIR0CmxA/qxC6ZdX2UKGgGR7/FBBRhttQ9aAdLA2gIR0Cmw5iRfWtmdX2UKGgGR7+3ppvgm7aqaAdLAmgIR0CmwrY8uBczdX2UKGgGR7/BeiSJTER8aAdLAmgIR0CmxB4HgP3BdX2UKGgGR7/QYG+sYEW7aAdLA2gIR0CmwyuuRs/IdX2UKGgGR7/CaDwpe/pMaAdLAmgIR0CmwsX5vcagdX2UKGgGR7/VZnctXgccaAdLA2gIR0Cmw60oScsldX2UKGgGR7/TeEZiuuA7aAdLA2gIR0CmxC2n0kGBdX2UKGgGR7/GPI4lyBClaAdLA2gIR0Cmwzoqbz9TdX2UKGgGR7/VF/hESdvsaAdLA2gIR0Cmw72KMvRJdX2UKGgGR7/FxOLzf779aAdLA2gIR0CmxD3pW3jNdX2UKGgGR7/SHoHLRrrPaAdLA2gIR0Cmw0phnanKdX2UKGgGR7/LpyIYWLxaaAdLA2gIR0Cmw8uc+aBqdX2UKGgGR7/SSLZSNwR5aAdLA2gIR0CmxEwPqcEvdX2UKGgGR7/LRb8m8dxRaAdLA2gIR0Cmw1h86V+rdX2UKGgGR7/mYjrzGxUvaAdLCWgIR0CmwvS0jTrndX2UKGgGR7+fIGQjlgc+aAdLAWgIR0CmwvkdFOO9dX2UKGgGR7/Ih4+r2g3+aAdLA2gIR0CmxFvV/c33dX2UKGgGR7/QlU6xPfsNaAdLA2gIR0Cmw2gvL5h0dX2UKGgGR7/XCiAUcn3MaAdLBWgIR0Cmw+TpHI6sdX2UKGgGR7+wofCAMDwIaAdLAmgIR0CmwwKJVKf4dX2UKGgGR7+61fE4vN/waAdLAmgIR0CmxGVRDTjOdX2UKGgGR7/AnhsImgJ1aAdLAmgIR0Cmw3Gnfl6rdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (678 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.119474967289716, "std_reward": 0.08072752885454913, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-10T18:09:39.672323"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d454d6e64aeb4836fe911c9847be7e6f8b6f440d49f14bddb8f39ce6e48f78d
3
+ size 2623