File size: 2,822 Bytes
28c2798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: org_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# org_model
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9527
- F1 Micro: 0.8011
- F1 Macro: 0.7779
- F1 Weighted: 0.8108
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 400
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Micro | F1 Macro | F1 Weighted |
|:-------------:|:------:|:----:|:---------------:|:--------:|:--------:|:-----------:|
| 1.5515 | 0.0064 | 25 | 1.3111 | 0.7801 | 0.7504 | 0.7890 |
| 1.2983 | 0.0127 | 50 | 1.2188 | 0.7748 | 0.7572 | 0.7891 |
| 1.2193 | 0.0191 | 75 | 1.1271 | 0.7855 | 0.7583 | 0.7937 |
| 1.1269 | 0.0255 | 100 | 1.0890 | 0.7952 | 0.7639 | 0.8015 |
| 1.0734 | 0.0318 | 125 | 1.0594 | 0.7949 | 0.7635 | 0.8008 |
| 1.0384 | 0.0382 | 150 | 1.0389 | 0.7857 | 0.7614 | 0.7937 |
| 1.0168 | 0.0446 | 175 | 1.0126 | 0.8045 | 0.7794 | 0.8133 |
| 1.0043 | 0.0510 | 200 | 0.9998 | 0.8034 | 0.7786 | 0.8123 |
| 1.0406 | 0.0573 | 225 | 0.9874 | 0.8074 | 0.7803 | 0.8153 |
| 1.0488 | 0.0637 | 250 | 0.9838 | 0.7922 | 0.7664 | 0.8000 |
| 0.9894 | 0.0701 | 275 | 0.9673 | 0.8034 | 0.7780 | 0.8122 |
| 0.9969 | 0.0764 | 300 | 0.9629 | 0.7992 | 0.7720 | 0.8069 |
| 1.0047 | 0.0828 | 325 | 0.9655 | 0.8000 | 0.7689 | 0.8058 |
| 0.9812 | 0.0892 | 350 | 0.9623 | 0.8049 | 0.7839 | 0.8159 |
| 0.9681 | 0.0955 | 375 | 0.9551 | 0.8016 | 0.7794 | 0.8118 |
| 1.0594 | 0.1019 | 400 | 0.9527 | 0.8011 | 0.7779 | 0.8108 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.3.0+cu118
- Datasets 2.19.0
- Tokenizers 0.19.1 |