StevenLe456 commited on
Commit
bc1eded
·
1 Parent(s): 160a2fc

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +103 -103
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
- license: apache-2.0
3
- base_model: facebook/wav2vec2-base
4
  tags:
5
  - generated_from_trainer
6
  metrics:
@@ -15,10 +15,10 @@ should probably proofread and complete it, then remove this comment. -->
15
 
16
  # viet_tones_model
17
 
18
- This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 1.1184
21
- - Accuracy: 0.6343
22
 
23
  ## Model description
24
 
@@ -52,104 +52,104 @@ The following hyperparameters were used during training:
52
 
53
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
55
- | No log | 0.89 | 6 | 1.7926 | 0.1713 |
56
- | 1.7926 | 1.93 | 13 | 1.7939 | 0.1435 |
57
- | 1.7896 | 2.96 | 20 | 1.7970 | 0.1620 |
58
- | 1.7896 | 4.0 | 27 | 1.8005 | 0.1620 |
59
- | 1.7862 | 4.89 | 33 | 1.8022 | 0.1343 |
60
- | 1.7834 | 5.93 | 40 | 1.7990 | 0.1620 |
61
- | 1.7834 | 6.96 | 47 | 1.7894 | 0.2130 |
62
- | 1.7676 | 8.0 | 54 | 1.7747 | 0.2083 |
63
- | 1.7484 | 8.89 | 60 | 1.7896 | 0.1944 |
64
- | 1.7484 | 9.93 | 67 | 1.7173 | 0.2361 |
65
- | 1.7067 | 10.96 | 74 | 1.6657 | 0.3056 |
66
- | 1.6068 | 12.0 | 81 | 1.6346 | 0.3333 |
67
- | 1.6068 | 12.89 | 87 | 1.6470 | 0.2593 |
68
- | 1.5271 | 13.93 | 94 | 1.4749 | 0.3981 |
69
- | 1.4149 | 14.96 | 101 | 1.4666 | 0.4028 |
70
- | 1.4149 | 16.0 | 108 | 1.4847 | 0.3472 |
71
- | 1.3235 | 16.89 | 114 | 1.3637 | 0.4491 |
72
- | 1.2868 | 17.93 | 121 | 1.3511 | 0.4352 |
73
- | 1.2868 | 18.96 | 128 | 1.2934 | 0.4907 |
74
- | 1.23 | 20.0 | 135 | 1.2820 | 0.4028 |
75
- | 1.1396 | 20.89 | 141 | 1.2031 | 0.4815 |
76
- | 1.1396 | 21.93 | 148 | 1.1080 | 0.5231 |
77
- | 1.1081 | 22.96 | 155 | 1.1190 | 0.5046 |
78
- | 1.0351 | 24.0 | 162 | 1.1349 | 0.5093 |
79
- | 1.0351 | 24.89 | 168 | 1.0874 | 0.5556 |
80
- | 0.9699 | 25.93 | 175 | 1.0437 | 0.5880 |
81
- | 0.9053 | 26.96 | 182 | 1.0321 | 0.6019 |
82
- | 0.9053 | 28.0 | 189 | 0.9728 | 0.6111 |
83
- | 0.8888 | 28.89 | 195 | 1.0362 | 0.5648 |
84
- | 0.86 | 29.93 | 202 | 1.0383 | 0.5417 |
85
- | 0.86 | 30.96 | 209 | 1.0711 | 0.5833 |
86
- | 0.8211 | 32.0 | 216 | 1.0905 | 0.5417 |
87
- | 0.8024 | 32.89 | 222 | 1.0128 | 0.5880 |
88
- | 0.8024 | 33.93 | 229 | 1.0117 | 0.5880 |
89
- | 0.7646 | 34.96 | 236 | 1.0704 | 0.5370 |
90
- | 0.7509 | 36.0 | 243 | 0.9359 | 0.625 |
91
- | 0.7509 | 36.89 | 249 | 0.9723 | 0.5926 |
92
- | 0.7497 | 37.93 | 256 | 0.9732 | 0.5880 |
93
- | 0.77 | 38.96 | 263 | 1.1571 | 0.5463 |
94
- | 0.6967 | 40.0 | 270 | 0.9483 | 0.6065 |
95
- | 0.6967 | 40.89 | 276 | 0.9693 | 0.6204 |
96
- | 0.6825 | 41.93 | 283 | 0.9650 | 0.6157 |
97
- | 0.6538 | 42.96 | 290 | 0.9995 | 0.5833 |
98
- | 0.6538 | 44.0 | 297 | 1.0210 | 0.6157 |
99
- | 0.6888 | 44.89 | 303 | 1.0026 | 0.6019 |
100
- | 0.6459 | 45.93 | 310 | 1.1209 | 0.5463 |
101
- | 0.6459 | 46.96 | 317 | 1.1040 | 0.5926 |
102
- | 0.6613 | 48.0 | 324 | 1.0255 | 0.5833 |
103
- | 0.6184 | 48.89 | 330 | 0.9860 | 0.6204 |
104
- | 0.6184 | 49.93 | 337 | 1.0235 | 0.6065 |
105
- | 0.607 | 50.96 | 344 | 0.9155 | 0.6435 |
106
- | 0.5838 | 52.0 | 351 | 1.1091 | 0.5926 |
107
- | 0.5838 | 52.89 | 357 | 1.0614 | 0.6296 |
108
- | 0.5797 | 53.93 | 364 | 1.0243 | 0.6157 |
109
- | 0.5813 | 54.96 | 371 | 1.1504 | 0.5741 |
110
- | 0.5813 | 56.0 | 378 | 1.0142 | 0.6111 |
111
- | 0.5761 | 56.89 | 384 | 1.0299 | 0.6204 |
112
- | 0.5771 | 57.93 | 391 | 1.0172 | 0.6343 |
113
- | 0.5771 | 58.96 | 398 | 1.0439 | 0.625 |
114
- | 0.5554 | 60.0 | 405 | 1.1390 | 0.6019 |
115
- | 0.5526 | 60.89 | 411 | 1.0127 | 0.6528 |
116
- | 0.5526 | 61.93 | 418 | 1.0244 | 0.6157 |
117
- | 0.5364 | 62.96 | 425 | 0.9823 | 0.6435 |
118
- | 0.542 | 64.0 | 432 | 1.0146 | 0.6389 |
119
- | 0.542 | 64.89 | 438 | 0.9928 | 0.6435 |
120
- | 0.5542 | 65.93 | 445 | 0.9951 | 0.6343 |
121
- | 0.5365 | 66.96 | 452 | 1.0877 | 0.5926 |
122
- | 0.5365 | 68.0 | 459 | 1.1002 | 0.6296 |
123
- | 0.5414 | 68.89 | 465 | 1.0248 | 0.625 |
124
- | 0.5346 | 69.93 | 472 | 1.0004 | 0.6343 |
125
- | 0.5346 | 70.96 | 479 | 0.9755 | 0.6389 |
126
- | 0.5007 | 72.0 | 486 | 1.0589 | 0.625 |
127
- | 0.5043 | 72.89 | 492 | 1.0533 | 0.6111 |
128
- | 0.5043 | 73.93 | 499 | 1.0226 | 0.625 |
129
- | 0.5156 | 74.96 | 506 | 1.0525 | 0.6204 |
130
- | 0.4906 | 76.0 | 513 | 1.1322 | 0.6065 |
131
- | 0.4906 | 76.89 | 519 | 1.0985 | 0.625 |
132
- | 0.5276 | 77.93 | 526 | 1.0526 | 0.6435 |
133
- | 0.4837 | 78.96 | 533 | 1.0548 | 0.6435 |
134
- | 0.478 | 80.0 | 540 | 1.0868 | 0.6481 |
135
- | 0.478 | 80.89 | 546 | 1.0795 | 0.6435 |
136
- | 0.4955 | 81.93 | 553 | 1.0994 | 0.6157 |
137
- | 0.4781 | 82.96 | 560 | 1.0665 | 0.6343 |
138
- | 0.4781 | 84.0 | 567 | 1.0682 | 0.6343 |
139
- | 0.4716 | 84.89 | 573 | 1.0680 | 0.6435 |
140
- | 0.4722 | 85.93 | 580 | 1.0624 | 0.6435 |
141
- | 0.4722 | 86.96 | 587 | 1.0196 | 0.6528 |
142
- | 0.4706 | 88.0 | 594 | 1.0115 | 0.6435 |
143
- | 0.4661 | 88.89 | 600 | 1.0320 | 0.6296 |
144
- | 0.4661 | 89.93 | 607 | 1.1057 | 0.6296 |
145
- | 0.4804 | 90.96 | 614 | 1.1147 | 0.6204 |
146
- | 0.4738 | 92.0 | 621 | 1.0985 | 0.6343 |
147
- | 0.4738 | 92.89 | 627 | 1.0814 | 0.6435 |
148
- | 0.4808 | 93.93 | 634 | 1.0890 | 0.6435 |
149
- | 0.4668 | 94.96 | 641 | 1.0977 | 0.6343 |
150
- | 0.4668 | 96.0 | 648 | 1.1112 | 0.6343 |
151
- | 0.4289 | 96.89 | 654 | 1.1161 | 0.6343 |
152
- | 0.4583 | 97.78 | 660 | 1.1184 | 0.6343 |
153
 
154
 
155
  ### Framework versions
 
1
  ---
2
+ license: cc-by-nc-4.0
3
+ base_model: nguyenvulebinh/wav2vec2-base-vietnamese-250h
4
  tags:
5
  - generated_from_trainer
6
  metrics:
 
15
 
16
  # viet_tones_model
17
 
18
+ This model is a fine-tuned version of [nguyenvulebinh/wav2vec2-base-vietnamese-250h](https://huggingface.co/nguyenvulebinh/wav2vec2-base-vietnamese-250h) on an unknown dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.9783
21
+ - Accuracy: 0.5972
22
 
23
  ## Model description
24
 
 
52
 
53
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
55
+ | No log | 0.89 | 6 | 1.7955 | 0.1296 |
56
+ | 1.7924 | 1.93 | 13 | 1.7938 | 0.1343 |
57
+ | 1.7919 | 2.96 | 20 | 1.7916 | 0.2037 |
58
+ | 1.7919 | 4.0 | 27 | 1.7907 | 0.1713 |
59
+ | 1.7903 | 4.89 | 33 | 1.7886 | 0.1852 |
60
+ | 1.7883 | 5.93 | 40 | 1.7798 | 0.2269 |
61
+ | 1.7883 | 6.96 | 47 | 1.7487 | 0.25 |
62
+ | 1.7717 | 8.0 | 54 | 1.7104 | 0.2407 |
63
+ | 1.726 | 8.89 | 60 | 1.6488 | 0.2685 |
64
+ | 1.726 | 9.93 | 67 | 1.5835 | 0.2731 |
65
+ | 1.6651 | 10.96 | 74 | 1.6020 | 0.2778 |
66
+ | 1.6332 | 12.0 | 81 | 1.5351 | 0.2778 |
67
+ | 1.6332 | 12.89 | 87 | 1.4977 | 0.2963 |
68
+ | 1.5708 | 13.93 | 94 | 1.4903 | 0.2870 |
69
+ | 1.5543 | 14.96 | 101 | 1.4671 | 0.2731 |
70
+ | 1.5543 | 16.0 | 108 | 1.3992 | 0.3194 |
71
+ | 1.4872 | 16.89 | 114 | 1.3854 | 0.3009 |
72
+ | 1.4861 | 17.93 | 121 | 1.3411 | 0.3426 |
73
+ | 1.4861 | 18.96 | 128 | 1.3142 | 0.3472 |
74
+ | 1.4281 | 20.0 | 135 | 1.3021 | 0.4259 |
75
+ | 1.38 | 20.89 | 141 | 1.2657 | 0.4028 |
76
+ | 1.38 | 21.93 | 148 | 1.2372 | 0.4352 |
77
+ | 1.3472 | 22.96 | 155 | 1.2341 | 0.4815 |
78
+ | 1.3029 | 24.0 | 162 | 1.1815 | 0.4306 |
79
+ | 1.3029 | 24.89 | 168 | 1.1797 | 0.4954 |
80
+ | 1.3042 | 25.93 | 175 | 1.1403 | 0.4583 |
81
+ | 1.281 | 26.96 | 182 | 1.1349 | 0.4722 |
82
+ | 1.281 | 28.0 | 189 | 1.1369 | 0.4907 |
83
+ | 1.2614 | 28.89 | 195 | 1.0999 | 0.4954 |
84
+ | 1.2133 | 29.93 | 202 | 1.1677 | 0.4676 |
85
+ | 1.2133 | 30.96 | 209 | 1.0785 | 0.5 |
86
+ | 1.2527 | 32.0 | 216 | 1.1092 | 0.4861 |
87
+ | 1.1722 | 32.89 | 222 | 1.0424 | 0.5185 |
88
+ | 1.1722 | 33.93 | 229 | 1.0791 | 0.4907 |
89
+ | 1.1225 | 34.96 | 236 | 1.0447 | 0.4907 |
90
+ | 1.1447 | 36.0 | 243 | 1.0777 | 0.4583 |
91
+ | 1.1447 | 36.89 | 249 | 1.0141 | 0.4954 |
92
+ | 1.1484 | 37.93 | 256 | 1.0196 | 0.5324 |
93
+ | 1.11 | 38.96 | 263 | 0.9791 | 0.5417 |
94
+ | 1.046 | 40.0 | 270 | 0.9798 | 0.5231 |
95
+ | 1.046 | 40.89 | 276 | 0.9366 | 0.5694 |
96
+ | 1.0582 | 41.93 | 283 | 0.9645 | 0.5602 |
97
+ | 1.0569 | 42.96 | 290 | 0.9764 | 0.5694 |
98
+ | 1.0569 | 44.0 | 297 | 1.0340 | 0.5324 |
99
+ | 1.028 | 44.89 | 303 | 0.9969 | 0.5463 |
100
+ | 1.04 | 45.93 | 310 | 1.0251 | 0.5185 |
101
+ | 1.04 | 46.96 | 317 | 1.0447 | 0.5417 |
102
+ | 0.9889 | 48.0 | 324 | 0.9487 | 0.5324 |
103
+ | 1.0055 | 48.89 | 330 | 1.0147 | 0.5 |
104
+ | 1.0055 | 49.93 | 337 | 1.0015 | 0.5046 |
105
+ | 0.9955 | 50.96 | 344 | 0.9763 | 0.5278 |
106
+ | 0.9382 | 52.0 | 351 | 1.0306 | 0.5278 |
107
+ | 0.9382 | 52.89 | 357 | 0.9970 | 0.5463 |
108
+ | 0.9601 | 53.93 | 364 | 0.9487 | 0.5741 |
109
+ | 0.9736 | 54.96 | 371 | 0.9658 | 0.5463 |
110
+ | 0.9736 | 56.0 | 378 | 0.9789 | 0.5602 |
111
+ | 0.9237 | 56.89 | 384 | 0.9940 | 0.5463 |
112
+ | 0.9588 | 57.93 | 391 | 0.9778 | 0.5463 |
113
+ | 0.9588 | 58.96 | 398 | 0.9789 | 0.5648 |
114
+ | 0.9393 | 60.0 | 405 | 0.9612 | 0.5602 |
115
+ | 0.9291 | 60.89 | 411 | 0.9141 | 0.5556 |
116
+ | 0.9291 | 61.93 | 418 | 0.9770 | 0.5463 |
117
+ | 0.929 | 62.96 | 425 | 0.9385 | 0.5556 |
118
+ | 0.9448 | 64.0 | 432 | 0.9504 | 0.5463 |
119
+ | 0.9448 | 64.89 | 438 | 0.9984 | 0.5463 |
120
+ | 0.9426 | 65.93 | 445 | 0.9228 | 0.5602 |
121
+ | 0.8949 | 66.96 | 452 | 0.9729 | 0.5509 |
122
+ | 0.8949 | 68.0 | 459 | 0.9825 | 0.5602 |
123
+ | 0.9041 | 68.89 | 465 | 0.9769 | 0.5509 |
124
+ | 0.8828 | 69.93 | 472 | 0.9914 | 0.5648 |
125
+ | 0.8828 | 70.96 | 479 | 0.9838 | 0.5509 |
126
+ | 0.8874 | 72.0 | 486 | 0.9646 | 0.5741 |
127
+ | 0.8723 | 72.89 | 492 | 1.0682 | 0.5324 |
128
+ | 0.8723 | 73.93 | 499 | 1.0629 | 0.5417 |
129
+ | 0.8953 | 74.96 | 506 | 0.9770 | 0.5648 |
130
+ | 0.879 | 76.0 | 513 | 1.0038 | 0.5787 |
131
+ | 0.879 | 76.89 | 519 | 1.0529 | 0.5648 |
132
+ | 0.896 | 77.93 | 526 | 1.0300 | 0.5602 |
133
+ | 0.8519 | 78.96 | 533 | 1.0451 | 0.5463 |
134
+ | 0.8414 | 80.0 | 540 | 1.0755 | 0.5509 |
135
+ | 0.8414 | 80.89 | 546 | 1.0287 | 0.5556 |
136
+ | 0.8342 | 81.93 | 553 | 1.0140 | 0.5602 |
137
+ | 0.8653 | 82.96 | 560 | 1.0787 | 0.5463 |
138
+ | 0.8653 | 84.0 | 567 | 1.0762 | 0.5509 |
139
+ | 0.8357 | 84.89 | 573 | 1.0307 | 0.5741 |
140
+ | 0.8455 | 85.93 | 580 | 1.0171 | 0.5648 |
141
+ | 0.8455 | 86.96 | 587 | 0.9886 | 0.5880 |
142
+ | 0.8238 | 88.0 | 594 | 0.9806 | 0.5741 |
143
+ | 0.8613 | 88.89 | 600 | 1.0177 | 0.5833 |
144
+ | 0.8613 | 89.93 | 607 | 1.0273 | 0.5602 |
145
+ | 0.8265 | 90.96 | 614 | 0.9857 | 0.5926 |
146
+ | 0.831 | 92.0 | 621 | 0.9701 | 0.5972 |
147
+ | 0.831 | 92.89 | 627 | 0.9726 | 0.5972 |
148
+ | 0.8247 | 93.93 | 634 | 0.9765 | 0.5880 |
149
+ | 0.8041 | 94.96 | 641 | 0.9801 | 0.5926 |
150
+ | 0.8041 | 96.0 | 648 | 0.9796 | 0.5926 |
151
+ | 0.8387 | 96.89 | 654 | 0.9790 | 0.5972 |
152
+ | 0.7906 | 97.78 | 660 | 0.9783 | 0.5972 |
153
 
154
 
155
  ### Framework versions