StivenLancheros
commited on
Commit
·
55de566
1
Parent(s):
825bcd3
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- precision
|
6 |
+
- recall
|
7 |
+
- f1
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: Biobert-base-cased-v1.2-finetuned-ner-CRAFT-EN-FR-ES-IT-DE-Aug-NoEWC
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# Biobert-base-cased-v1.2-finetuned-ner-CRAFT-EN-FR-ES-IT-DE-Aug-NoEWC
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [StivenLancheros/Biobert-base-cased-v1.2-finetuned-ner-CRAFT-EN-FR-ES-IT-DE2-NoEWC](https://huggingface.co/StivenLancheros/Biobert-base-cased-v1.2-finetuned-ner-CRAFT-EN-FR-ES-IT-DE2-NoEWC) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.4245
|
22 |
+
- Precision: 0.7158
|
23 |
+
- Recall: 0.7763
|
24 |
+
- F1: 0.7448
|
25 |
+
- Accuracy: 0.9230
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 3e-05
|
45 |
+
- train_batch_size: 16
|
46 |
+
- eval_batch_size: 16
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 20
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
55 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
56 |
+
| 0.4287 | 1.0 | 1360 | 0.4776 | 0.6125 | 0.7809 | 0.6865 | 0.8944 |
|
57 |
+
| 0.274 | 2.0 | 2720 | 0.4727 | 0.6370 | 0.7705 | 0.6974 | 0.9026 |
|
58 |
+
| 0.2219 | 3.0 | 4080 | 0.4405 | 0.6790 | 0.7695 | 0.7215 | 0.9134 |
|
59 |
+
| 0.1964 | 4.0 | 5440 | 0.4245 | 0.7158 | 0.7763 | 0.7448 | 0.9230 |
|
60 |
+
| 0.1599 | 5.0 | 6800 | 0.4378 | 0.7029 | 0.7732 | 0.7364 | 0.9204 |
|
61 |
+
| 0.1489 | 6.0 | 8160 | 0.4324 | 0.7018 | 0.7749 | 0.7365 | 0.9196 |
|
62 |
+
| 0.1342 | 7.0 | 9520 | 0.4534 | 0.7131 | 0.7867 | 0.7481 | 0.9216 |
|
63 |
+
| 0.12 | 8.0 | 10880 | 0.4532 | 0.7230 | 0.7865 | 0.7534 | 0.9243 |
|
64 |
+
| 0.1135 | 9.0 | 12240 | 0.4688 | 0.7155 | 0.7705 | 0.7420 | 0.9206 |
|
65 |
+
| 0.107 | 10.0 | 13600 | 0.4713 | 0.7214 | 0.7863 | 0.7524 | 0.9241 |
|
66 |
+
| 0.1004 | 11.0 | 14960 | 0.4594 | 0.7278 | 0.7823 | 0.7541 | 0.9251 |
|
67 |
+
| 0.093 | 12.0 | 16320 | 0.4564 | 0.7343 | 0.7937 | 0.7628 | 0.9275 |
|
68 |
+
| 0.0862 | 13.0 | 17680 | 0.4699 | 0.7242 | 0.7970 | 0.7588 | 0.9262 |
|
69 |
+
| 0.0788 | 14.0 | 19040 | 0.4745 | 0.7397 | 0.7935 | 0.7657 | 0.9285 |
|
70 |
+
| 0.0785 | 15.0 | 20400 | 0.4822 | 0.7389 | 0.7998 | 0.7682 | 0.9283 |
|
71 |
+
| 0.0711 | 16.0 | 21760 | 0.5031 | 0.7255 | 0.7964 | 0.7593 | 0.9264 |
|
72 |
+
| 0.073 | 17.0 | 23120 | 0.5038 | 0.7317 | 0.7976 | 0.7632 | 0.9274 |
|
73 |
+
| 0.0695 | 18.0 | 24480 | 0.4860 | 0.7411 | 0.8016 | 0.7702 | 0.9296 |
|
74 |
+
| 0.0649 | 19.0 | 25840 | 0.4978 | 0.7376 | 0.7977 | 0.7665 | 0.9285 |
|
75 |
+
| 0.0605 | 20.0 | 27200 | 0.4983 | 0.7371 | 0.7974 | 0.7661 | 0.9286 |
|
76 |
+
|
77 |
+
|
78 |
+
### Framework versions
|
79 |
+
|
80 |
+
- Transformers 4.27.2
|
81 |
+
- Pytorch 1.13.0+cu117
|
82 |
+
- Datasets 2.7.1
|
83 |
+
- Tokenizers 0.13.2
|