ryan0712 commited on
Commit
97522d4
1 Parent(s): 8823e03

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -3
README.md CHANGED
@@ -13,9 +13,10 @@ This is an unofficial implementation of "[AlpaGasus: Training a better Alpaca wi
13
  - **License**: Non-Commercial Creative Commons license ([CC BY-NC-4.0](https://creativecommons.org/licenses/by-nc/4.0/))
14
 
15
 
16
- ### Training Dataset
17
 
18
  "StudentLLM/Alpagasus-2-13b-QLoRA-merged" used [gpt4life](https://github.com/gpt4life/alpagasus)'s gpt-3.5-turbo filtered dataset, 'alpaca_t45.json'.
 
19
  Configuration of the dataset is as follows:
20
 
21
  ```
@@ -58,9 +59,34 @@ Our model was finetuned using QLoRA on single A100 80GB GPU. Training details ar
58
  | TruthfulQA | 38.53 |
59
 
60
  ### LLM Evaluation
 
61
 
62
- ### Fine-tuning Procedure
63
- Our mod
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
 
65
  ### Citations
66
  ```bibtex
 
13
  - **License**: Non-Commercial Creative Commons license ([CC BY-NC-4.0](https://creativecommons.org/licenses/by-nc/4.0/))
14
 
15
 
16
+ ### Training dataset
17
 
18
  "StudentLLM/Alpagasus-2-13b-QLoRA-merged" used [gpt4life](https://github.com/gpt4life/alpagasus)'s gpt-3.5-turbo filtered dataset, 'alpaca_t45.json'.
19
+
20
  Configuration of the dataset is as follows:
21
 
22
  ```
 
59
  | TruthfulQA | 38.53 |
60
 
61
  ### LLM Evaluation
62
+ We tried to follow the evaluation metric introduced by the AlpaGasus paper. During the process, we consulted the code by [gpt4life](https://github.com/gpt4life/alpagasus). We used OpenAI's gpt-3.5-turbo as the evaluator model, and Alpaca2-LoRA-13B(it doesn't exist now...) as the comparison model. For more detailed information, please refer to our Github [repo](https://github.com/gauss5930/AlpaGasus2-QLoRA).
63
 
64
+ The evaluation result of AlpaGasus2-QLoRA is as follows:
65
+ ![results](https://user-images.githubusercontent.com/80087878/262848860-8742bcc4-1bbc-449f-8bcf-660c08fcc10d.png)
66
+
67
+ ### How to use
68
+ To use "StudentLLM/Alpagasus-2-13b-QLoRA-merged", please follow the following code! The use of the 7B model is the same!
69
+ ```
70
+ from peft import PeftModel, PeftConfig
71
+ from transformers import AutoModelForCausalLM
72
+ import torch
73
+
74
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
75
+
76
+ config = PeftConfig.from_pretrained("StudentLLM/Alpagasus-2-13B-QLoRA")
77
+ model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-13b-hf", use_auth_token="yotu_HuggingFace_token").to(device)
78
+ model = PeftModel.from_pretrained(model, "StudentLLM/Alpagasus-2-13B-QLoRA")
79
+
80
+ tokenizer = AutoTokenizer.from_pretrained("StudentLLM/Alpagasus-2-13B-QLoRA")
81
+ tokenizer.pad_token = tokenizer.eos_token
82
+
83
+ input_data = "Please tell me 3 ways to relieve stress." # You can enter any questions!!
84
+
85
+ model_inputs = tokenizer(input_data, return_tensors='pt').to(device)
86
+ model_output = model.generate(**model_inputs, max_length=256)
87
+ model_output = tokenizer.decode(model_output[0], skip_special_tokens=True)
88
+ print(model_output)
89
+ ```
90
 
91
  ### Citations
92
  ```bibtex