# 引言 [Rain's SQLCoder](https://huggingface.co/SuanChang/rain-SQLCoder) 是自然语言生成 SparkSQL 的 SOTA 大型语言模型(LLM),拥有 32B 参数,基于 [Qwen2.5-Coder-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct) 微调。 Rain's SQLCoder 针对自然语言到 SparkSQL 转换任务进行了优化,能够有效处理最长达 32k 个 token 的上下文,尤其适用于复杂且大规模的 SQL 查询生成任务。

🤗 Hugging Face | 🖥️ 演示 | 💬 微信 | GitHub

[English](./README.md) | [中文](./README-zh.md) # 提示词 Rain's SQLCoder 采用了 [Alpaca](https://github.com/tatsu-lab/stanford_alpaca) 模板,使用的提示词如下。 ```` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: [BEGIN OF TASK INSTRUCTION] You are an expert in composing Spark SQL queries. You are given a user query and a set of table schemas. Based on the user query, you need to generate one Spark SQL query to achieve the purpose. {task description for date hint and related question and sqls} [END OF TASK INSTRUCTION] [BEGIN OF TABLE SCHEMAS] {schemas} [END OF TABLE SCHEMAS] [BEGIN OF GENERATION HINT] {date hint} [END OF GENERATION HINT] [BEGIN OF RELATED QUERIES] {related question and sqls} [END OF RELATED QUERIES] [BEGIN OF FORMAT INSTRUCTION] The output MUST strictly adhere to the following format, and NO other text MUST be included. ```sql your output Spark SQL query ``` [END OF FORMAT INSTRUCTION] [BEGIN OF QUERY] User Query: {user question} [END OF QUERY] ### Response: ```` # 评估 我们沿用了 [SQL-Eval](https://github.com/defog-ai/sql-eval) 中评估预测结果与标准结果的逻辑: 1. 如果预测的数据块和标准数据块完全一致,则预测结果正确; 2. 标准SQL中不包含排序逻辑,且预测数据块和标准数据块在排序之后完全一致,则预测结果正确; 3. 如果标准数据块的列是预测数据块的子集,则预测结果正确; 4. 其余情况均认为预测结果错误。 # 实验结果 我们在两个测试集上对比了Rain's SQLCoder与国内外先进自然语言大模型的生成准确率。其中,基准测试集(Benchmark Dataset)包含基础样本,而增强测试集(Enhanced Dataset)则是在基准测试集的基础上,通过分层抽样方法选取20%的样本,并补充了相关的用户查询及对应的SparkSQL语句,以评估模型在增强上下文信息下的性能表现。实验结果表明,Rain's SQLCoder在查询意图理解、SQL语法准确性和复杂查询处理等方面均展现出显著优势。 ## 基准测试集 benchmark ## 增强测试集 enhanced # 快速开始 我们在此处提供示例,帮助您快速掌握如何加载并使用我们的模型。 >注意: Rain's SQLCoder 只被训练用于生成 `SELECT` 语句,当表结构无法支持回答用户问题时,模型会拒绝回答。 ````python import torch from transformers import AutoModelForCausalLM, AutoTokenizer from utils.prompt import SQLGeneratePrompt model_name = "SuanChang/rain-SQLCoder" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map="auto", ) tokenizer = AutoTokenizer.from_pretrained(model_name) question = "What is the name of the department that offers a course that has a description including the word 'Statistics'?" schemas = [ '''CREATE TABLE `course` ( `crs_code` STRING, `dept_code` STRING, `crs_description` STRING, `crs_credit` DOUBLE );''', '''CREATE TABLE `department` ( `dept_code` STRING, `dept_name` STRING, `school_code` STRING, `emp_num` INT, `dept_address` STRING, `dept_extension` INT );''', '''CREATE TABLE `student` ( `stu_num` INT, `stu_lname` STRING, `stu_fname` STRING, `stu_init` STRING, `stu_dob` STRING, `stu_hrs` INT, `stu_class` STRING, `stu_gpa` DOUBLE, `stu_transfer` INT, `dept_code` STRING, `stu_phone` INT, `prof_num` INT );''' ] hint = "- Today is 2025-02-01." data = dict( question=question, schema="\n\n".join(schemas), hint=hint, related_question_sqls=None, ) text, _, _ = SQLGeneratePrompt.prompt(data) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=32768 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response) ''' ```sql SELECT d.dept_name FROM department d JOIN course c ON d.dept_code = c.dept_code WHERE c.crs_description LIKE '%Statistics%'; ``` ''' ````