--- library_name: transformers tags: [] --- # Model Card for Model ID MobileVITV2 based Image Classification model to classify apple leaf diseases ## Model Details ### Model Description - **Developed by:** Sudeep Mungara ## Uses To classify if the apple leaf is healthy, rust, scab or has multiple diseases ## How to Get Started with the Model ```python from PIL import Image import torch from transformers import AutoImageProcessor, AutoModelForImageClassification processor = AutoImageProcessor.from_pretrained("SudeepM27/apple-leaf-disease-detection") model = AutoModelForImageClassification.from_pretrained("SudeepM27/apple-leaf-disease-detection") model.eval() image_path = "path to image" # Replace with your test image path image = Image.open(image_path) inputs = processor(images=image, return_tensors="pt") # Perform inference with torch.no_grad(): outputs = model(**inputs) # Get the predicted class logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() predicted_label = model.config.id2label[predicted_class_idx] print(f"Predicted class index: {predicted_class_idx}") print(f"Predicted label: {predicted_label}") ``` -->