SultanR commited on
Commit
82b207a
1 Parent(s): dc7e573

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -190
README.md CHANGED
@@ -1,199 +1,76 @@
1
  ---
 
 
 
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
  library_name: transformers
6
+ tags:
7
+ - Tulu3
8
+ - Smollm
9
+ - SLMs
10
+ - Small
11
+ - Huggingface
12
+ - Allenai
13
+ - SFT
14
+ - DPO
15
+ - GGUF
16
+ - RLVR
17
+ - RL
18
+ base_model:
19
+ - SultanR/SmolTulu-1.7b-Instruct
20
+ datasets:
21
+ - allenai/RLVR-GSM-MATH-IF-Mixed-Constraints
22
+ pipeline_tag: text-generation
23
  ---
24
 
25
+ # SmolLM2 1.7b Aligned and Reinforced Through Tulu 3!
26
 
27
+ ![SmolTulu Banner](smoltulubanner.png)
28
 
29
+ SmolTulu-1.7b-Reinforced is the reinforcement learning with verifiable rewards (RLVR) version of [SmolTulu-1.7b-Instruct](https://huggingface.co/SultanR/SmolTulu-1.7b-Instruct), which leverages [AllenAI's Tulu 3 post-training pipeline](https://allenai.org/blog/tulu-3-technical)
30
 
31
+ This model scores the highest current score in both IFEval and GSM8k while maintaining the extremely low contamination levels in Tulu 3 and SmolLM2! I've listed the datasets used to do both the RLVR stage, which is the same one mentioned used in the Tulu 3 paper.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  ## Evaluation
33
 
34
+ I ran these evaluations using [SmolLM2's evaluation code](https://github.com/huggingface/smollm/tree/main/evaluation) for a more fair comparison.
35
+
36
+
37
+ | Metric | SmolTulu-1.7b-Instruct | SmolTulu-1.7b-Reinforced | SmolLM2-1.7B-Instruct | Llama-1B-Instruct | Qwen2.5-1.5B-Instruct | SmolLM1-1.7B-Instruct |
38
+ |:----------------------------|:---------------------:|:---------------------:|:---------------------:|:---------------------:|:---------------------:|:---------------------:|
39
+ | ARC (Average) | 51.5 | 51.1 | **51.7** | 41.6 | 46.2 | 43.7 |
40
+ | BBH (3-shot) | 33.8 | 33.4 | 32.2 | 27.6 | **35.3** | 25.7 |
41
+ | GSM8K (5-shot) | 51.6 | **61.0** | 48.2 | 26.8 | 42.8 | 4.6 |
42
+ | HellaSwag | 61.1 | 60.4 | **66.1** | 56.1 | 60.9 | 55.5 |
43
+ | IFEval (Average prompt/inst) | 67.7 | **69.3** | 56.7 | 53.5 | 47.4 | 23.1 |
44
+ | MMLU-Pro (MCF) | 17.4 | 17.3 | 19.3 | 12.7 | **24.2** | 11.7 |
45
+ | PIQA | 72.2 | 72.1 | **74.4** | 72.3 | 73.2 | 71.6 |
46
+
47
+ ## Usage
48
+
49
+ Just like any Huggingface model, just run it using the transformers library:
50
+
51
+ ```python
52
+ # pip install transformers
53
+ from transformers import AutoModelForCausalLM, AutoTokenizer
54
+ checkpoint = "SultanR/SmolTulu-1.7b-Reinforced"
55
+ device = "cuda" # for GPU usage or "cpu" for CPU usage
56
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
57
+ # for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
58
+ model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
59
+ inputs = tokenizer.encode("Gravity is", return_tensors="pt").to(device)
60
+ outputs = model.generate(inputs)
61
+ print(tokenizer.decode(outputs[0]))
62
+ ```
63
+
64
+ ## Citation
65
+
66
+ ```
67
+ @misc{alrashed2024smoltuluhigherlearningrate,
68
+ title={SmolTulu: Higher Learning Rate to Batch Size Ratios Can Lead to Better Reasoning in SLMs},
69
+ author={Sultan Alrashed},
70
+ year={2024},
71
+ eprint={2412.08347},
72
+ archivePrefix={arXiv},
73
+ primaryClass={cs.CL},
74
+ url={https://arxiv.org/abs/2412.08347},
75
+ }
76
+ ```