Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,76 @@
|
|
1 |
---
|
|
|
|
|
|
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
|
8 |
-
|
9 |
|
|
|
10 |
|
11 |
-
|
12 |
-
## Model Details
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
## Evaluation
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
##
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
library_name: transformers
|
6 |
+
tags:
|
7 |
+
- Tulu3
|
8 |
+
- Smollm
|
9 |
+
- SLMs
|
10 |
+
- Small
|
11 |
+
- Huggingface
|
12 |
+
- Allenai
|
13 |
+
- SFT
|
14 |
+
- DPO
|
15 |
+
- GGUF
|
16 |
+
- RLVR
|
17 |
+
- RL
|
18 |
+
base_model:
|
19 |
+
- SultanR/SmolTulu-1.7b-Instruct
|
20 |
+
datasets:
|
21 |
+
- allenai/RLVR-GSM-MATH-IF-Mixed-Constraints
|
22 |
+
pipeline_tag: text-generation
|
23 |
---
|
24 |
|
25 |
+
# SmolLM2 1.7b Aligned and Reinforced Through Tulu 3!
|
26 |
|
27 |
+
![SmolTulu Banner](smoltulubanner.png)
|
28 |
|
29 |
+
SmolTulu-1.7b-Reinforced is the reinforcement learning with verifiable rewards (RLVR) version of [SmolTulu-1.7b-Instruct](https://huggingface.co/SultanR/SmolTulu-1.7b-Instruct), which leverages [AllenAI's Tulu 3 post-training pipeline](https://allenai.org/blog/tulu-3-technical)
|
30 |
|
31 |
+
This model scores the highest current score in both IFEval and GSM8k while maintaining the extremely low contamination levels in Tulu 3 and SmolLM2! I've listed the datasets used to do both the RLVR stage, which is the same one mentioned used in the Tulu 3 paper.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
## Evaluation
|
33 |
|
34 |
+
I ran these evaluations using [SmolLM2's evaluation code](https://github.com/huggingface/smollm/tree/main/evaluation) for a more fair comparison.
|
35 |
+
|
36 |
+
|
37 |
+
| Metric | SmolTulu-1.7b-Instruct | SmolTulu-1.7b-Reinforced | SmolLM2-1.7B-Instruct | Llama-1B-Instruct | Qwen2.5-1.5B-Instruct | SmolLM1-1.7B-Instruct |
|
38 |
+
|:----------------------------|:---------------------:|:---------------------:|:---------------------:|:---------------------:|:---------------------:|:---------------------:|
|
39 |
+
| ARC (Average) | 51.5 | 51.1 | **51.7** | 41.6 | 46.2 | 43.7 |
|
40 |
+
| BBH (3-shot) | 33.8 | 33.4 | 32.2 | 27.6 | **35.3** | 25.7 |
|
41 |
+
| GSM8K (5-shot) | 51.6 | **61.0** | 48.2 | 26.8 | 42.8 | 4.6 |
|
42 |
+
| HellaSwag | 61.1 | 60.4 | **66.1** | 56.1 | 60.9 | 55.5 |
|
43 |
+
| IFEval (Average prompt/inst) | 67.7 | **69.3** | 56.7 | 53.5 | 47.4 | 23.1 |
|
44 |
+
| MMLU-Pro (MCF) | 17.4 | 17.3 | 19.3 | 12.7 | **24.2** | 11.7 |
|
45 |
+
| PIQA | 72.2 | 72.1 | **74.4** | 72.3 | 73.2 | 71.6 |
|
46 |
+
|
47 |
+
## Usage
|
48 |
+
|
49 |
+
Just like any Huggingface model, just run it using the transformers library:
|
50 |
+
|
51 |
+
```python
|
52 |
+
# pip install transformers
|
53 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
54 |
+
checkpoint = "SultanR/SmolTulu-1.7b-Reinforced"
|
55 |
+
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
56 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
57 |
+
# for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
|
58 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
|
59 |
+
inputs = tokenizer.encode("Gravity is", return_tensors="pt").to(device)
|
60 |
+
outputs = model.generate(inputs)
|
61 |
+
print(tokenizer.decode(outputs[0]))
|
62 |
+
```
|
63 |
+
|
64 |
+
## Citation
|
65 |
+
|
66 |
+
```
|
67 |
+
@misc{alrashed2024smoltuluhigherlearningrate,
|
68 |
+
title={SmolTulu: Higher Learning Rate to Batch Size Ratios Can Lead to Better Reasoning in SLMs},
|
69 |
+
author={Sultan Alrashed},
|
70 |
+
year={2024},
|
71 |
+
eprint={2412.08347},
|
72 |
+
archivePrefix={arXiv},
|
73 |
+
primaryClass={cs.CL},
|
74 |
+
url={https://arxiv.org/abs/2412.08347},
|
75 |
+
}
|
76 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|