{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x796bc01c1f40>"}, "verbose": 2, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699249911897578532, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMCQEL5cfgE+k2xiPi/iZb5NDoY9Y2f+OwAAAAAAAAAAQLQvPoUesbusZ4G7WbDzOLQdJb3/ZZg6AACAPwAAgD8AAek8nLAsPbiGwrynCk6+ciW9O3Ws8DwAAAAAAAAAAMCGrT17Ovg+2/BMPXY+yr6Yko49mbUgvQAAAAAAAAAA80KhPWzH3ruNt1G9ckiMPMYsKT0wkWy9AACAPwAAAABT3Hk+hWrPPONq2bqEgIO5L4tePi4cEToAAIA/AACAPzMTsz2kYG65Y+JUPPNRkjxLQGM6VpZOPAAAgD8AAAAAAMBiO/ZwJrrz2WUzNkHxL7Y9wTuTzsGzAACAPwAAgD8Ai/+8A9ILvGcYGTwCcEA8t1lbPQYZH70AAIA/AACAP7MAfD4s3NQ8Qzo3u5/aWDwWZW8+gqZJvQAAgD8AAIA/miXDvQ/1Pj6DEY4+oRLXvq99oj26SU28AAAAAAAAAABmfZ8+RJBNP1klxT4TIiK/DBOFPmqExTsAAAAAAAAAAM2dtbzpLlA+6iuHvSxdMb6xeQ+9eDWdvAAAAAAAAAAAAH8GPS8elT9OToE9AtxBv+KhOz3Ycvw7AAAAAAAAAACjI5k+KflMPV5dv74/IKW9Ga6VvZNemb0AAAAAAAAAAM1K5jy424c9O+XlOlYTQb7Pbdk8wCppvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV+QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGP1YwZflZKMAWyUTegDjAF0lEdAoSwcG5c1O3V9lChoBkdAc2KK28Zk1GgHS/toCEdAoSxkN2C/XXV9lChoBkdAY9oWnCO3lWgHTegDaAhHQKEsepb2USt1fZQoaAZHQHFqZVCHARFoB0v6aAhHQKEsg+4b0e51fZQoaAZHQHDDoOH31z1oB0vYaAhHQKEuA1UEPlN1fZQoaAZHQHC1t1IRRMxoB0vGaAhHQKEujM3ZPEd1fZQoaAZHQHIOAD/2kBVoB0vgaAhHQKEunL8Jlat1fZQoaAZHQHE+JMDfWMFoB01bAWgIR0ChL2Bmwqy4dX2UKGgGR0BtZ7gXMyJsaAdL2WgIR0ChL4RQzk6tdX2UKGgGR0BxvLFdcB2faAdL3GgIR0ChL8nmA9V4dX2UKGgGR0ByR+KekHlfaAdNCwFoCEdAoTA8I1LrX3V9lChoBkdAcR//5+H8CWgHS8FoCEdAoTCp60IC2nV9lChoBkdAYQMfQrtmc2gHTegDaAhHQKEw9o0ygwp1fZQoaAZHQHEFehK15SpoB0vmaAhHQKExFLHuJDV1fZQoaAZHQHBYmGVRk3FoB0vgaAhHQKExPnfVI7N1fZQoaAZHQG64cJtzjm1oB0veaAhHQKExTBbfP5Z1fZQoaAZHQGC4cVQAMlVoB03oA2gIR0ChMrBCdBjXdX2UKGgGR0BxQe/mDDjzaAdL9mgIR0ChM8MJQcghdX2UKGgGR0BjrHJxNqQBaAdN6ANoCEdAoTPHPzFuN3V9lChoBkdAcVi+nqFAV2gHS/1oCEdAoTPvCMxXXHV9lChoBkdAcZwbFCLMtGgHS9poCEdAoTPvQBxPwnV9lChoBkdAb7gDZDiOvWgHS9poCEdAoTRRYmsvI3V9lChoBkdAcgxznA6+4GgHS/NoCEdAoTSJIxxku3V9lChoBkdAcnOvFm4Aj2gHS+ZoCEdAoTVHd9Dx9XV9lChoBkdActLi+cpb2WgHS9poCEdAoTVPfqHGj3V9lChoBkdAcvNi0v4/NmgHS9VoCEdAoTWKPIXCTHV9lChoBkdAcJ3NATqSo2gHS+FoCEdAoTW3PeHi33V9lChoBkdAYLW76pHZsmgHTegDaAhHQKE2DbUPQOZ1fZQoaAZHQHHNakl/pdNoB00ZAWgIR0ChNrQ22oegdX2UKGgGR0BisFmUW2w3aAdN6ANoCEdAoTcmOS4e93V9lChoBkdAbmSm9g4OtmgHS99oCEdAoTc5k078vXV9lChoBkdAcUrsvZh8Y2gHTXEBaAhHQKE331XeWOZ1fZQoaAZHQExmvxH5JshoB0utaAhHQKE4OZOzpot1fZQoaAZHQHD/cXJo0yhoB0vTaAhHQKE4aTMaCMB1fZQoaAZHQHEVpAprk81oB0v/aAhHQKE5PyGSIP91fZQoaAZHQEf31RLsa89oB0vAaAhHQKE5vQnhKlJ1fZQoaAZHQHCNxk7OmixoB0vRaAhHQKE6GfkFOfx1fZQoaAZHQDt8lXzUZvVoB0uHaAhHQKE6jgZTAFh1fZQoaAZHQG65d4FA3UBoB0vYaAhHQKE6rj6vaDh1fZQoaAZHQHHbCgkC3gFoB01NAWgIR0ChO3etCAtndX2UKGgGR0BzLvDZUT+OaAdNVgFoCEdAoTuGBtk4FXV9lChoBkdAcl4ZFocrAmgHTQIBaAhHQKE8BT5wfhd1fZQoaAZHQHAkMM7U5MloB0vMaAhHQKE8ShNdqtZ1fZQoaAZHQHDdJq20AtFoB0voaAhHQKE8mQbMott1fZQoaAZHQHPSbkfcN6RoB0u6aAhHQKE8pPbfxc51fZQoaAZHQHMP7xqfvndoB0u8aAhHQKE8/HzYmLN1fZQoaAZHQHA9pLM9r45oB0vXaAhHQKE+wmkWRA91fZQoaAZHQHCu4FFDv3JoB0u1aAhHQKE/WZXuE251fZQoaAZHQHF9QuRLbpNoB0v4aAhHQKFANMqz7dl1fZQoaAZHQHGW9PHktEpoB0vtaAhHQKFAVst03fh1fZQoaAZHQHJQdcOby6NoB02zAWgIR0ChQSrIHTqjdX2UKGgGR0BwThTHbRF7aAdL2GgIR0ChQT0z0pVkdX2UKGgGR0Bzn+dxyXD4aAdNZgFoCEdAoUHKCz1K5HV9lChoBkdAbVRK+zt1IWgHS+RoCEdAoUIgq3EycnV9lChoBkdAcax5/b0voWgHS9xoCEdAoUJ/tUn5SHV9lChoBkdAcqMWNm16V2gHS+xoCEdAoUKjeqJdjXV9lChoBkdAcBMid8RcvGgHTVUCaAhHQKFC+XaakRB1fZQoaAZHQG9MUNz8xbloB0vmaAhHQKFDEwMYuTR1fZQoaAZHQHIa0T101ZVoB00lAWgIR0ChQyONgjQidX2UKGgGR0ByTHtb9qDcaAdNIgFoCEdAoUPHJ3gUDnV9lChoBkdARR5xJd0JW2gHS8ZoCEdAoUTKX+l0o3V9lChoBkdAcG04y44IbGgHS+toCEdAoUTTZlFtsXV9lChoBkdAXzLsXzlLe2gHTegDaAhHQKFE6VVPva11fZQoaAZHQHGYkt/WlM1oB0vSaAhHQKFE9LL6k691fZQoaAZHQHDey4SYgJVoB00KAWgIR0ChRQK1gH/tdX2UKGgGR0Bxmz+4smOVaAdL0mgIR0ChRX25Yoy9dX2UKGgGR0BwkMI3R5TqaAdL82gIR0ChRgPSMLncdX2UKGgGR0BtgOhmGucMaAdL4WgIR0ChRhWFnIyTdX2UKGgGR0Bye1G+bmU4aAdLzWgIR0ChRkXZXdTHdX2UKGgGR0Bvd7UPQOWjaAdL2WgIR0ChRmC2UjcEdX2UKGgGR0BwGhtXPqs2aAdL0mgIR0ChRpoq0+khdX2UKGgGR0BxY9ipeeFtaAdL2WgIR0ChRuPAwfyPdX2UKGgGR0Bs9RkXk5p8aAdL72gIR0ChRybXpW3jdX2UKGgGR0By0biPyTY/aAdLxWgIR0ChRzCOWBz4dX2UKGgGR0BxA++IuXeFaAdLymgIR0ChSBlN+LFXdX2UKGgGR0BwN9VDKHO9aAdL0GgIR0ChSE8b70nPdX2UKGgGR0BxPYjQiRnwaAdNYQFoCEdAoUhfyXlbNnV9lChoBkdAcfHAzpHI62gHS+doCEdAoUirCtRvWHV9lChoBkdAbRTgTh5xBGgHS/doCEdAoUkCsZHd43V9lChoBkdAb+uJl8PWhGgHS+toCEdAoUlM9jgAInV9lChoBkdAcc80g8r7O2gHS9loCEdAoUmRnlGPP3V9lChoBkdAcR/GcnVoYmgHS8toCEdAoUmjjkuHvnV9lChoBkdAcSLyS3b212gHS+xoCEdAoUnN4RmK7HV9lChoBkdAcLr6LwWnCWgHS9JoCEdAoUnznvDxb3V9lChoBkdAcRoNFjNILGgHS/toCEdAoUpC8WbgCXV9lChoBkdAcXjGwRoRI2gHS8JoCEdAoUpJVQyhz3V9lChoBkdAcaqx6OYIB2gHS9hoCEdAoUufag261HV9lChoBkdAcIo3/Pw/gWgHS85oCEdAoUuoG0NSZXV9lChoBkdAcYU5lvqC6GgHS9hoCEdAoUvkPrfLtHV9lChoBkdActHsoDxLCmgHS9JoCEdAoUyI7aIvanV9lChoBke/93CzkZJkG2gHS5ZoCEdAoUz4bGWD6HV9lChoBkdAciESP2f03GgHS9doCEdAoU0KnR9gGHV9lChoBkdAcn32JBPbf2gHTQkBaAhHQKFNNxtHhCN1fZQoaAZHQHGhKnaWX1JoB0vRaAhHQKFNVmGucMF1fZQoaAZHQHFAE8V58jRoB0vYaAhHQKFNX3dsSCh1fZQoaAZHQHBrRIvrWy1oB0vGaAhHQKFN4uez2OB1fZQoaAZHQG8SpQLux8loB0vraAhHQKFN/2Dg62h1fZQoaAZHQGAlAeJYT0xoB03oA2gIR0ChTqsPJ7swdX2UKGgGR0ByfZvhqCYkaAdLtWgIR0ChTv2kJrtWdX2UKGgGR0BxRIi4axX5aAdN6AFoCEdAoU84/Vy3kXVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 351, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}