Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,108 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card for
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
|
|
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
|
20 |
-
- **Developed by:**
|
21 |
-
- **
|
22 |
-
- **
|
23 |
-
- **
|
24 |
-
- **
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
### Model Sources
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
|
58 |
## Bias, Risks, and Limitations
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
|
70 |
## How to Get Started with the Model
|
71 |
|
72 |
-
Use the code below to get started with the model
|
73 |
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
-
|
79 |
|
80 |
-
|
81 |
|
82 |
-
|
|
|
83 |
|
84 |
### Training Procedure
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
tags:
|
7 |
+
- causal-lm
|
8 |
+
- Large Language Model
|
9 |
+
- LLM
|
10 |
+
- detoxification
|
11 |
+
- unbias
|
12 |
+
- bias
|
13 |
+
- instruction
|
14 |
+
- finetuned
|
15 |
+
- llama2
|
16 |
+
- DPO
|
17 |
---
|
18 |
|
19 |
+
# Model Card for SungJoo/llama2-7b-sft-detox
|
|
|
|
|
|
|
20 |
|
21 |
+
This model is an instruction-tuned version of meta-llama/Llama-2-7b-hf, fine-tuned to reduce toxicity in Large Language Models (LLMs).
|
22 |
|
23 |
## Model Details
|
24 |
|
25 |
### Model Description
|
26 |
|
27 |
+
This model is built on the LLaMA-2-7b architecture and has been refined with instruction tuning and Direct Preference Optimization (DPO).
|
|
|
|
|
28 |
|
29 |
+
- **Developed by:** Sungjoo Byun (Grace Byun)
|
30 |
+
- **Model type:** Auto-regressive language model
|
31 |
+
- **Language(s) (NLP):** English
|
32 |
+
- **License:** Apache License 2.0
|
33 |
+
- **Finetuned from:** meta-llama/Llama-2-7b-hf
|
|
|
|
|
34 |
|
35 |
+
### Model Sources
|
36 |
|
37 |
+
- **Repository:** TBD
|
38 |
+
- **Paper:** TBD
|
|
|
|
|
|
|
39 |
|
40 |
## Uses
|
41 |
|
42 |
+
This model is intended to be used for generating less toxic language in various applications, including chatbots and other NLP systems.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
## Bias, Risks, and Limitations
|
45 |
|
46 |
+
While this model aims to reduce toxicity, it may still generate biased or harmful content. Users should apply this model with caution and review outputs for sensitive applications.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
## How to Get Started with the Model
|
49 |
|
50 |
+
Use the code below to get started with the model:
|
51 |
|
52 |
+
```python
|
53 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
54 |
+
|
55 |
+
tokenizer = AutoTokenizer.from_pretrained("SungJoo/llama2-7b-sft-dpo-detox")
|
56 |
+
model = AutoModelForCausalLM.from_pretrained("SungJoo/llama2-7b-sft-dpo-detox")
|
57 |
+
```
|
58 |
|
59 |
## Training Details
|
60 |
|
61 |
+
- Parameter-Efficient Fine-Tuning (PEFT)
|
62 |
|
63 |
+
- BitsAndBytes Configuration (bnb_config): This model employs a 4-bit quantization technique using the BitsAndBytes library to further enhance training efficiency.
|
64 |
|
65 |
+
### Training Data
|
66 |
+
The model was trained using a dataset specifically created to detoxify LLMs. DPO dataset will be publicly available soon.
|
67 |
|
68 |
### Training Procedure
|
69 |
|
70 |
+
The model was trained using efficient fine-tuning techniques with the following hyperparameters:
|
71 |
+
|
72 |
+
| **Hyperparameter** | **Value** |
|
73 |
+
|--------------------|-----------|
|
74 |
+
| Batch size | 4 |
|
75 |
+
| Learning rate | 2e-4 |
|
76 |
+
| Epochs | 10 |
|
77 |
+
| Max length | 2,048 |
|
78 |
+
| Max prompt length | 1,024 |
|
79 |
+
| Beta | 0.1 |
|
80 |
+
|
81 |
+
*Hyperparameters when applying DPO to LLaMA-2
|
82 |
+
|
83 |
+
|
84 |
+
## Objective
|
85 |
+
The main objective of this research is to reduce toxicity in LLMs by applying instruction tuning and Direct Preference Optimization (DPO).
|
86 |
+
A comprehensive instruction and DPO dataset was constructed for this purpose, which will be released in the future.
|
87 |
+
|
88 |
+
| **Model** | **LLaMA-2-base** | | **Finetuned LLaMA-2** | | **DPO LLaMA-2** | |
|
89 |
+
|--------------------|-------------------|-----------------------|-----------------------|-------------------------|-----------------------|-------------------------|
|
90 |
+
| **Category** | **\>=0.5 (%)** | **Count** | **\>=0.5 (%)** | **Count** | **\>=0.5 (%)** | **Count** |
|
91 |
+
| **TOXICITY** | 4.46 | 4,438 | 3.61 | 3,593 | 2.39 | 2,377 |
|
92 |
+
| | | | <span style="color:blue;">(-0.85)</span> | <span style="color:blue;">(-845)</span> | <span style="color:green;">(-1.22)</span> | <span style="color:green;">(-1,216)</span> |
|
93 |
+
| **SEVERE_TOXICITY**| 0.08 | 77 | 0.07 | 70 | 0.03 | 31 |
|
94 |
+
| | | | <span style="color:blue;">(-0.01)</span> | <span style="color:blue;">(-7)</span> | <span style="color:green;">(-0.04)</span> | <span style="color:green;">(-39)</span> |
|
95 |
+
| **IDENTITY_ATTACK**| 0.79 | 788 | 0.42 | 413 | 0.28 | 274 |
|
96 |
+
| | | | <span style="color:blue;">(-0.37)</span> | <span style="color:blue;">(-375)</span> | <span style="color:green;">(-0.14)</span> | <span style="color:green;">(-139)</span> |
|
97 |
+
| **INSULT** | 1.97 | 1,961 | 1.60 | 1,588 | 0.90 | 892 |
|
98 |
+
| | | | <span style="color:blue;">(-0.37)</span> | <span style="color:blue;">(-373)</span> | <span style="color:green;">(-0.70)</span> | <span style="color:green;">(-696)</span> |
|
99 |
+
| **PROFANITY** | 2.10 | 2,086 | 1.76 | 1,753 | 1.04 | 1,030 |
|
100 |
+
| | | | <span style="color:blue;">(-0.34)</span> | <span style="color:blue;">(-333)</span> | <span style="color:green;">(-0.72)</span> | <span style="color:green;">(-723)</span> |
|
101 |
+
| **THREAT** | 1.43 | 1,424 | 0.92 | 919 | 0.76 | 754 |
|
102 |
+
| | | | <span style="color:blue;">(-0.51)</span> | <span style="color:blue;">(-505)</span> | <span style="color:green;">(-0.16)</span> | <span style="color:green;">(-165)</span> |
|
103 |
+
*Comparison of LLaMA-2-base, Finetuned LLaMA-2, and DPO LLaMA-2 across various categories. Reductions in blue indicate comparisons between the base model and the fine-tuned model, while text in green represents comparisons between the fine-tuned model and the DPO model.*
|
104 |
+
|
105 |
+
The table above shows the effectiveness of this model in reducing bias, measured using the RealToxicityPrompt dataset and the Perspective API.
|
106 |
+
|
107 |
+
## Contact
|
108 |
+
For any questions or issues, please contact [email protected].
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|