docs(readme): fork original readme and add js examples
Browse files
README.md
CHANGED
@@ -1,6 +1,181 @@
|
|
1 |
---
|
|
|
2 |
library_name: "transformers.js"
|
|
|
|
|
|
|
3 |
---
|
4 |
-
https://huggingface.co/thenlper/gte-small with ONNX weights to be compatible with Transformers.js.
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
pipeline_tag: feature-extraction
|
3 |
library_name: "transformers.js"
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
license: mit
|
7 |
---
|
|
|
8 |
|
9 |
+
# gte-small
|
10 |
+
|
11 |
+
> Fork of https://huggingface.co/thenlper/gte-small with ONNX weights to be compatible with Transformers.js.
|
12 |
+
|
13 |
+
Gegeral Text Embeddings (GTE) model.
|
14 |
+
|
15 |
+
The GTE models are trained by Alibaba DAMO Academy. They are mainly based on the BERT framework and currently offer three different sizes of models, including [GTE-large](https://huggingface.co/thenlper/gte-large), [GTE-base](https://huggingface.co/thenlper/gte-base), and [GTE-small](https://huggingface.co/thenlper/gte-small). The GTE models are trained on a large-scale corpus of relevance text pairs, covering a wide range of domains and scenarios. This enables the GTE models to be applied to various downstream tasks of text embeddings, including **information retrieval**, **semantic textual similarity**, **text reranking**, etc.
|
16 |
+
|
17 |
+
## Metrics
|
18 |
+
|
19 |
+
Performance of GTE models were compared with other popular text embedding models on the MTEB benchmark. For more detailed comparison results, please refer to the [MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard).
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
| Model Name | Model Size (GB) | Dimension | Sequence Length | Average (56) | Clustering (11) | Pair Classification (3) | Reranking (4) | Retrieval (15) | STS (10) | Summarization (1) | Classification (12) |
|
24 |
+
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
|
25 |
+
| [**gte-large**](https://huggingface.co/thenlper/gte-large) | 0.67 | 1024 | 512 | **63.13** | 46.84 | 85.00 | 59.13 | 52.22 | 83.35 | 31.66 | 73.33 |
|
26 |
+
| [**gte-base**](https://huggingface.co/thenlper/gte-base) | 0.22 | 768 | 512 | **62.39** | 46.2 | 84.57 | 58.61 | 51.14 | 82.3 | 31.17 | 73.01 |
|
27 |
+
| [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1.34 | 1024| 512 | 62.25 | 44.49 | 86.03 | 56.61 | 50.56 | 82.05 | 30.19 | 75.24 |
|
28 |
+
| [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 0.44 | 768 | 512 | 61.5 | 43.80 | 85.73 | 55.91 | 50.29 | 81.05 | 30.28 | 73.84 |
|
29 |
+
| [**gte-small**](https://huggingface.co/thenlper/gte-small) | 0.07 | 384 | 512 | **61.36** | 44.89 | 83.54 | 57.7 | 49.46 | 82.07 | 30.42 | 72.31 |
|
30 |
+
| [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | - | 1536 | 8192 | 60.99 | 45.9 | 84.89 | 56.32 | 49.25 | 80.97 | 30.8 | 70.93 |
|
31 |
+
| [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 0.13 | 384 | 512 | 59.93 | 39.92 | 84.67 | 54.32 | 49.04 | 80.39 | 31.16 | 72.94 |
|
32 |
+
| [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 9.73 | 768 | 512 | 59.51 | 43.72 | 85.06 | 56.42 | 42.24 | 82.63 | 30.08 | 73.42 |
|
33 |
+
| [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 0.44 | 768 | 514 | 57.78 | 43.69 | 83.04 | 59.36 | 43.81 | 80.28 | 27.49 | 65.07 |
|
34 |
+
| [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 28.27 | 4096 | 2048 | 57.59 | 38.93 | 81.9 | 55.65 | 48.22 | 77.74 | 33.6 | 66.19 |
|
35 |
+
| [all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) | 0.13 | 384 | 512 | 56.53 | 41.81 | 82.41 | 58.44 | 42.69 | 79.8 | 27.9 | 63.21 |
|
36 |
+
| [all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | 0.09 | 384 | 512 | 56.26 | 42.35 | 82.37 | 58.04 | 41.95 | 78.9 | 30.81 | 63.05 |
|
37 |
+
| [contriever-base-msmarco](https://huggingface.co/nthakur/contriever-base-msmarco) | 0.44 | 768 | 512 | 56.00 | 41.1 | 82.54 | 53.14 | 41.88 | 76.51 | 30.36 | 66.68 |
|
38 |
+
| [sentence-t5-base](https://huggingface.co/sentence-transformers/sentence-t5-base) | 0.22 | 768 | 512 | 55.27 | 40.21 | 85.18 | 53.09 | 33.63 | 81.14 | 31.39 | 69.81 |
|
39 |
+
|
40 |
+
|
41 |
+
## Usage
|
42 |
+
|
43 |
+
This model can be used with both [Python](#python) and [JavaScript](#javascript).
|
44 |
+
|
45 |
+
### Python
|
46 |
+
Use with [Transformers](https://huggingface.co/docs/transformers/index) and [PyTorch](https://pytorch.org/docs/stable/index.html):
|
47 |
+
|
48 |
+
```python
|
49 |
+
import torch.nn.functional as F
|
50 |
+
from torch import Tensor
|
51 |
+
from transformers import AutoTokenizer, AutoModel
|
52 |
+
|
53 |
+
def average_pool(last_hidden_states: Tensor,
|
54 |
+
attention_mask: Tensor) -> Tensor:
|
55 |
+
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
|
56 |
+
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
|
57 |
+
|
58 |
+
input_texts = [
|
59 |
+
"what is the capital of China?",
|
60 |
+
"how to implement quick sort in python?",
|
61 |
+
"Beijing",
|
62 |
+
"sorting algorithms"
|
63 |
+
]
|
64 |
+
|
65 |
+
tokenizer = AutoTokenizer.from_pretrained("thenlper/gte-small")
|
66 |
+
model = AutoModel.from_pretrained("thenlper/gte-small")
|
67 |
+
|
68 |
+
# Tokenize the input texts
|
69 |
+
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
|
70 |
+
|
71 |
+
outputs = model(**batch_dict)
|
72 |
+
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
|
73 |
+
|
74 |
+
# (Optionally) normalize embeddings
|
75 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
76 |
+
scores = (embeddings[:1] @ embeddings[1:].T) * 100
|
77 |
+
print(scores.tolist())
|
78 |
+
```
|
79 |
+
|
80 |
+
Use with [sentence-transformers](https://www.sbert.net/):
|
81 |
+
```python
|
82 |
+
from sentence_transformers import SentenceTransformer
|
83 |
+
from sentence_transformers.util import cos_sim
|
84 |
+
|
85 |
+
sentences = ['That is a happy person', 'That is a very happy person']
|
86 |
+
|
87 |
+
model = SentenceTransformer('thenlper/gte-large')
|
88 |
+
embeddings = model.encode(sentences)
|
89 |
+
print(cos_sim(embeddings[0], embeddings[1]))
|
90 |
+
```
|
91 |
+
|
92 |
+
### JavaScript
|
93 |
+
This model can be used with JavaScript via [Transformers.js](https://huggingface.co/docs/transformers.js/index).
|
94 |
+
|
95 |
+
Use with [Deno](https://deno.land/manual/introduction) or [Supabase Edge Functions](https://supabase.com/docs/guides/functions):
|
96 |
+
|
97 |
+
```ts
|
98 |
+
import { serve } from 'https://deno.land/[email protected]/http/server.ts'
|
99 |
+
import { env, pipeline } from 'https://cdn.jsdelivr.net/npm/@xenova/[email protected]'
|
100 |
+
|
101 |
+
// Configuration for Deno runtime
|
102 |
+
env.useBrowserCache = false;
|
103 |
+
env.allowLocalModels = false;
|
104 |
+
|
105 |
+
const pipe = await pipeline(
|
106 |
+
'feature-extraction',
|
107 |
+
'Supabase/gte-small',
|
108 |
+
);
|
109 |
+
|
110 |
+
serve(async (req) => {
|
111 |
+
// Extract input string from JSON body
|
112 |
+
const { input } = await req.json();
|
113 |
+
|
114 |
+
// Generate the embedding from the user input
|
115 |
+
const output = await pipe(input, {
|
116 |
+
pooling: 'mean',
|
117 |
+
normalize: true,
|
118 |
+
});
|
119 |
+
|
120 |
+
// Extract the embedding output
|
121 |
+
const embedding = Array.from(output.data);
|
122 |
+
|
123 |
+
// Return the embedding
|
124 |
+
return new Response(
|
125 |
+
JSON.stringify({ embedding }),
|
126 |
+
{ headers: { 'Content-Type': 'application/json' } }
|
127 |
+
);
|
128 |
+
});
|
129 |
+
```
|
130 |
+
|
131 |
+
Use within the browser ([JavaScript Modules](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules)):
|
132 |
+
|
133 |
+
```html
|
134 |
+
<script type="module">
|
135 |
+
|
136 |
+
import { pipeline } from 'https://cdn.jsdelivr.net/npm/@xenova/[email protected]';
|
137 |
+
|
138 |
+
const pipe = await pipeline(
|
139 |
+
'feature-extraction',
|
140 |
+
'Supabase/gte-small',
|
141 |
+
);
|
142 |
+
|
143 |
+
// Generate the embedding from text
|
144 |
+
const output = await pipe('Hello world', {
|
145 |
+
pooling: 'mean',
|
146 |
+
normalize: true,
|
147 |
+
});
|
148 |
+
|
149 |
+
// Extract the embedding output
|
150 |
+
const embedding = Array.from(output.data);
|
151 |
+
|
152 |
+
console.log(embedding);
|
153 |
+
|
154 |
+
</script>
|
155 |
+
```
|
156 |
+
|
157 |
+
Use within [Node.js](https://nodejs.org/en/docs) or a web bundler ([Webpack](https://webpack.js.org/concepts/), etc):
|
158 |
+
|
159 |
+
```js
|
160 |
+
import { pipeline } from '@xenova/transformers';
|
161 |
+
|
162 |
+
const pipe = await pipeline(
|
163 |
+
'feature-extraction',
|
164 |
+
'Supabase/gte-small',
|
165 |
+
);
|
166 |
+
|
167 |
+
// Generate the embedding from text
|
168 |
+
const output = await pipe('Hello world', {
|
169 |
+
pooling: 'mean',
|
170 |
+
normalize: true,
|
171 |
+
});
|
172 |
+
|
173 |
+
// Extract the embedding output
|
174 |
+
const embedding = Array.from(output.data);
|
175 |
+
|
176 |
+
console.log(embedding);
|
177 |
+
```
|
178 |
+
|
179 |
+
### Limitation
|
180 |
+
|
181 |
+
This model exclusively caters to English texts, and any lengthy texts will be truncated to a maximum of 512 tokens.
|