File size: 10,486 Bytes
2e36228 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
#copied from https://raw.githubusercontent.com/pytorch/vision/f0d3daa7f65bcde560e242d9bccc284721368f02/torchvision/transforms/functional_video.py
#copied from https://raw.githubusercontent.com/pytorch/vision/f0d3daa7f65bcde560e242d9bccc284721368f02/torchvision/transforms/transforms_video.py
#!/usr/bin/env python3
import numbers
import random
import torch
try:
import accimage
except:
pass
from torchvision.transforms import (
RandomResizedCrop,
)
from . import functional_video as F
def _get_image_size(img):
if isinstance(img, torch.Tensor) and img.dim() > 2:
return img.shape[-2:][::-1]
else:
raise TypeError("Unexpected type {}".format(type(img)))
class RandomCrop(object):
"""Crop the given PIL Image at a random location.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made.
padding (int or sequence, optional): Optional padding on each border
of the image. Default is None, i.e no padding. If a sequence of length
4 is provided, it is used to pad left, top, right, bottom borders
respectively. If a sequence of length 2 is provided, it is used to
pad left/right, top/bottom borders, respectively.
pad_if_needed (boolean): It will pad the image if smaller than the
desired size to avoid raising an exception. Since cropping is done
after padding, the padding seems to be done at a random offset.
fill: Pixel fill value for constant fill. Default is 0. If a tuple of
length 3, it is used to fill R, G, B channels respectively.
This value is only used when the padding_mode is constant
padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
- constant: pads with a constant value, this value is specified with fill
- edge: pads with the last value on the edge of the image
- reflect: pads with reflection of image (without repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
will result in [3, 2, 1, 2, 3, 4, 3, 2]
- symmetric: pads with reflection of image (repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
will result in [2, 1, 1, 2, 3, 4, 4, 3]
"""
def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode='constant'):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
self.padding = padding
self.pad_if_needed = pad_if_needed
self.fill = fill
self.padding_mode = padding_mode
@staticmethod
def get_params(img, output_size):
"""Get parameters for ``crop`` for a random crop.
Args:
img (PIL Image): Image to be cropped.
output_size (tuple): Expected output size of the crop.
Returns:
tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
"""
w, h = _get_image_size(img)
th, tw = output_size
if w == tw and h == th:
return 0, 0, h, w
i = random.randint(0, h - th)
j = random.randint(0, w - tw)
return i, j, th, tw
def __call__(self, img):
"""
Args:
img (PIL Image): Image to be cropped.
Returns:
PIL Image: Cropped image.
"""
if self.padding is not None:
img = F.pad(img, self.padding, self.fill, self.padding_mode)
# pad the width if needed
if self.pad_if_needed and img.size[0] < self.size[1]:
img = F.pad(img, (self.size[1] - img.size[0], 0), self.fill, self.padding_mode)
# pad the height if needed
if self.pad_if_needed and img.size[1] < self.size[0]:
img = F.pad(img, (0, self.size[0] - img.size[1]), self.fill, self.padding_mode)
i, j, h, w = self.get_params(img, self.size)
return F.crop(img, i, j, h, w)
def __repr__(self):
return self.__class__.__name__ + '(size={0}, padding={1})'.format(self.size, self.padding)
class RandomCropVideo(RandomCrop):
def __init__(self, size):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
def __call__(self, clip):
"""
Args:
clip (torch.tensor): Video clip to be cropped. Size is (C, T, H, W)
Returns:
torch.tensor: randomly cropped/resized video clip.
size is (C, T, OH, OW)
"""
i, j, h, w = self.get_params(clip, self.size)
return F.crop(clip, i, j, h, w)
def __repr__(self):
return self.__class__.__name__ + '(size={0})'.format(self.size)
class RandomResizedCropVideo(RandomResizedCrop):
def __init__(
self,
size,
scale=(0.08, 1.0),
ratio=(3.0 / 4.0, 4.0 / 3.0),
interpolation_mode="bilinear",
):
if isinstance(size, tuple):
assert len(size) == 2, "size should be tuple (height, width)"
self.size = size
else:
self.size = (size, size)
self.interpolation_mode = interpolation_mode
self.scale = scale
self.ratio = ratio
def __call__(self, clip):
"""
Args:
clip (torch.tensor): Video clip to be cropped. Size is (C, T, H, W)
Returns:
torch.tensor: randomly cropped/resized video clip.
size is (C, T, H, W)
"""
i, j, h, w = self.get_params(clip, self.scale, self.ratio)
return F.resized_crop(clip, i, j, h, w, self.size, self.interpolation_mode)
def __repr__(self):
return self.__class__.__name__ + \
'(size={0}, interpolation_mode={1}, scale={2}, ratio={3})'.format(
self.size, self.interpolation_mode, self.scale, self.ratio
)
class CenterCropVideo(object):
def __init__(self, crop_size):
if isinstance(crop_size, numbers.Number):
self.crop_size = (int(crop_size), int(crop_size))
else:
self.crop_size = crop_size
def __call__(self, clip):
"""
Args:
clip (torch.tensor): Video clip to be cropped. Size is (C, T, H, W)
Returns:
torch.tensor: central cropping of video clip. Size is
(C, T, crop_size, crop_size)
"""
return F.center_crop(clip, self.crop_size)
def __repr__(self):
return self.__class__.__name__ + '(crop_size={0})'.format(self.crop_size)
class CornerCropVideo(object):
def __init__(self, crop_size, loc="tr"):
if isinstance(crop_size, numbers.Number):
self.crop_size = (int(crop_size), int(crop_size))
else:
self.crop_size = crop_size
def __call__(self, clip, loc="tr"):
"""
Args:
clip (torch.tensor): Video clip to be cropped. Size is (C, T, H, W)
Returns:
torch.tensor: central cropping of video clip. Size is
(C, T, crop_size, crop_size)
"""
if loc == "tr":
i = 0
j = 0
elif loc == "center":
return F.corner_crop(clip, self.crop_size)
else:
i = clip.size(-2) - self.crop_size
j = clip.size(-1) - self.crop_size
return F.corner_crop(clip, self.crop_size, i, j)
def __repr__(self):
return self.__class__.__name__ + '(crop_size={0})'.format(self.crop_size)
class NormalizeVideo(object):
"""
Normalize the video clip by mean subtraction and division by standard deviation
Args:
mean (3-tuple): pixel RGB mean
std (3-tuple): pixel RGB standard deviation
inplace (boolean): whether do in-place normalization
"""
def __init__(self, mean, std, inplace=False):
self.mean = mean
self.std = std
self.inplace = inplace
def __call__(self, clip):
"""
Args:
clip (torch.tensor): video clip to be normalized. Size is (C, T, H, W)
"""
return F.normalize(clip, self.mean, self.std, self.inplace)
def __repr__(self):
return self.__class__.__name__ + '(mean={0}, std={1}, inplace={2})'.format(
self.mean, self.std, self.inplace)
class ToTensorVideo(object):
"""
Convert tensor data type from uint8 to float, divide value by 255.0 and
permute the dimenions of clip tensor
"""
def __init__(self):
pass
def __call__(self, clip):
"""
Args:
clip (torch.tensor, dtype=torch.uint8): Size is (T, H, W, C)
Return:
clip (torch.tensor, dtype=torch.float): Size is (C, T, H, W)
"""
return F.to_tensor(clip)
def __repr__(self):
return self.__class__.__name__
class RandomHorizontalFlipVideo(object):
"""
Flip the video clip along the horizonal direction with a given probability
Args:
p (float): probability of the clip being flipped. Default value is 0.5
"""
def __init__(self, p=0.5):
self.p = p
def __call__(self, clip):
"""
Args:
clip (torch.tensor): Size is (C, T, H, W)
Return:
clip (torch.tensor): Size is (C, T, H, W)
"""
if random.random() < self.p:
clip = F.hflip(clip)
return clip
def __repr__(self):
return self.__class__.__name__ + "(p={0})".format(self.p)
class ResizeVideo(object):
"""
Resize the video clip
"""
def __init__(self, w,h):
self.w = w
self.h = h
def __call__(self, clip):
"""
Args:
clip (torch.tensor): Size is (C, T, H, W)
Return:
clip (torch.tensor): Size is (C, T, h, w)
"""
#interpolare needs (T,C, H, W) order while clip is (C, T, H, W)
return torch.nn.functional.interpolate(
clip.permute(1,0,2,3),(self.h,self.w),mode="bilinear",align_corners=False).permute(1,0,2,3)
def __repr__(self):
return self.__class__.__name__ + "(w=%d,h=%d)"%(self.w,self.h) |