Superxixixi commited on
Commit
fe7cbab
·
1 Parent(s): 182c3ce

Delete scripts

Browse files
scripts/.ipynb_checkpoints/test-checkpoint.sh DELETED
@@ -1,40 +0,0 @@
1
- # #expid: 1.a
2
- # python -W ignore::UserWarning tools/test.py --cfg configs/selfattention_noise.yaml \
3
- # MODEL.SELFATTENTION.VERB_BASE_NOISE 1e-3 \
4
- # MODEL.SELFATTENTION.NOUN_BASE_NOISE 1e-2 \
5
- # MODEL.SELFATTENTION.ADD_NOISE_LAYERS "[0,1,2]" \
6
- # TEST.RESUME 1.a-v1e3_n1e2_012 \
7
- # TEST.DATASET "unseen" \
8
- # TEST.MODEL "seen" \
9
- # TEST.EPOCH 85
10
-
11
- # #expid: 1.b
12
- # python -W ignore::UserWarning tools/test.py --cfg configs/selfattention_noise.yaml \
13
- # MODEL.SELFATTENTION.VERB_BASE_NOISE 1e-3 \
14
- # MODEL.SELFATTENTION.NOUN_BASE_NOISE 1e-2 \
15
- # MODEL.SELFATTENTION.ADD_NOISE_LAYERS "[0]" \
16
- # TEST.RESUME 1.b-v1e3_n1e2_0 \
17
- # TEST.DATASET "unseen" \
18
- # TEST.MODEL "seen" \
19
- # TEST.EPOCH 63
20
-
21
-
22
- # #expid: 1.c
23
- # python -W ignore::UserWarning tools/test.py --cfg configs/selfattention_noise.yaml \
24
- # MODEL.SELFATTENTION.VERB_BASE_NOISE 1e-3 \
25
- # MODEL.SELFATTENTION.NOUN_BASE_NOISE 1e-2 \
26
- # MODEL.SELFATTENTION.ADD_NOISE_LAYERS "[1]" \
27
- # TEST.RESUME 1.c-v1e3_n1e2_1 \
28
- # TEST.DATASET "unseen" \
29
- # TEST.MODEL "seen" \
30
- # TEST.EPOCH 65
31
-
32
- #expid: 1.d
33
- python -W ignore::UserWarning tools/test.py --cfg configs/selfattention_noise.yaml \
34
- MODEL.SELFATTENTION.VERB_BASE_NOISE 1e-3 \
35
- MODEL.SELFATTENTION.NOUN_BASE_NOISE 1e-2 \
36
- MODEL.SELFATTENTION.ADD_NOISE_LAYERS "[2]" \
37
- TEST.RESUME 1.d-v1e3_n1e2_2 \
38
- TEST.DATASET "unseen" \
39
- TEST.MODEL "seen" \
40
- TEST.EPOCH 41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
scripts/.ipynb_checkpoints/train-checkpoint.sh DELETED
@@ -1,117 +0,0 @@
1
- # #expid: 0.a
2
- # python -W ignore::UserWarning tools/train.py --cfg configs/selfattention.yaml \
3
- # SESSION 0.a
4
-
5
- # #expid: 0.b
6
- # python -W ignore::UserWarning tools/train.py --cfg configs/selfattention.yaml \
7
- # SESSION 0.b
8
-
9
- # #expid: 0.c # change from utils deterministic to original method in coattention
10
- # python -W ignore::UserWarning tools/train.py --cfg configs/selfattention.yaml \
11
- # SESSION 0.c
12
-
13
- # #expid: 0.d # use deterministic 123 as coattention
14
- # python -W ignore::UserWarning tools/train.py --cfg configs/selfattention.yaml \
15
- # SESSION 0.d
16
-
17
-
18
- # 1 compare adding noise at different layers
19
- # #expid: 1.a
20
- # python -W ignore::UserWarning tools/train.py --cfg configs/selfattention_noise.yaml \
21
- # MODEL.SELFATTENTION.VERB_BASE_NOISE 1e-3 \
22
- # MODEL.SELFATTENTION.NOUN_BASE_NOISE 1e-2 \
23
- # MODEL.SELFATTENTION.ADD_NOISE_LAYERS "[0,1,2]" \
24
- # SESSION 1.a-v1e3_n1e2_012
25
-
26
- # #expid: 1.b
27
- # python -W ignore::UserWarning tools/train.py --cfg configs/selfattention_noise.yaml \
28
- # MODEL.SELFATTENTION.VERB_BASE_NOISE 1e-3 \
29
- # MODEL.SELFATTENTION.NOUN_BASE_NOISE 1e-2 \
30
- # MODEL.SELFATTENTION.ADD_NOISE_LAYERS "[0]" \
31
- # SESSION 1.b-v1e3_n1e2_0
32
-
33
- # #expid: 1.c
34
- # python -W ignore::UserWarning tools/train.py --cfg configs/selfattention_noise.yaml \
35
- # MODEL.SELFATTENTION.VERB_BASE_NOISE 1e-3 \
36
- # MODEL.SELFATTENTION.NOUN_BASE_NOISE 1e-2 \
37
- # MODEL.SELFATTENTION.ADD_NOISE_LAYERS "[1]" \
38
- # SESSION 1.c-v1e3_n1e2_1
39
-
40
- # #expid: 1.d
41
- # python -W ignore::UserWarning tools/train.py --cfg configs/selfattention_noise.yaml \
42
- # MODEL.SELFATTENTION.VERB_BASE_NOISE 1e-3 \
43
- # MODEL.SELFATTENTION.NOUN_BASE_NOISE 1e-2 \
44
- # MODEL.SELFATTENTION.ADD_NOISE_LAYERS "[2]" \
45
- # SESSION 1.d-v1e3_n1e2_2
46
-
47
-
48
- # #expid: 2.a
49
- # python -W ignore::UserWarning tools/train.py --cfg configs/selfattention_noise.yaml \
50
- # MODEL.SELFATTENTION.VERB_BASE_NOISE 1e-3 \
51
- # MODEL.SELFATTENTION.NOUN_BASE_NOISE 1e-2 \
52
- # MODEL.SELFATTENTION.ADD_NOISE_LAYERS "[0]" \
53
- # TRAIN.SAMPLE 1 \
54
- # SESSION 2.a-v1e3_n1e2_0_0.5
55
-
56
- # #expid: 3.a
57
- # python -W ignore::UserWarning tools/train.py --cfg configs/selfattention_noise.yaml \
58
- # MODEL.SELFATTENTION.VERB_BASE_NOISE 1e-2 \
59
- # MODEL.SELFATTENTION.NOUN_BASE_NOISE 1e-2 \
60
- # MODEL.SELFATTENTION.ADD_NOISE_LAYERS "[0]" \
61
- # SESSION 3.a-v1e2_n1e2_0
62
-
63
- # #expid: 3.b
64
- # python -W ignore::UserWarning tools/train.py --cfg configs/selfattention_noise.yaml \
65
- # MODEL.SELFATTENTION.VERB_BASE_NOISE 1e-4 \
66
- # MODEL.SELFATTENTION.NOUN_BASE_NOISE 1e-2 \
67
- # MODEL.SELFATTENTION.ADD_NOISE_LAYERS "[0]" \
68
- # SESSION 3.b-v1e4_n1e2_0
69
-
70
- # #expid: 3.c
71
- # python -W ignore::UserWarning tools/train.py --cfg configs/selfattention_noise.yaml \
72
- # MODEL.SELFATTENTION.VERB_BASE_NOISE 1e-5 \
73
- # MODEL.SELFATTENTION.NOUN_BASE_NOISE 1e-2 \
74
- # MODEL.SELFATTENTION.ADD_NOISE_LAYERS "[0]" \
75
- # SESSION 3.c-v1e5_n1e2_0
76
-
77
-
78
- # # try different noise type
79
- # #expid: 4.a
80
- # python -W ignore::UserWarning tools/train.py --cfg configs/selfattention_noise.yaml \
81
- # MODEL.SELFATTENTION.VERB_BASE_NOISE 1e-3 \
82
- # MODEL.SELFATTENTION.NOUN_BASE_NOISE 1e-2 \
83
- # MODEL.SELFATTENTION.ADD_NOISE_LAYERS "[0]" \
84
- # MODEL.SELFATTENTION.NOISE_TYPE "blurry" \
85
- # SESSION 4.a_v1e3_n1e2_0_blurry
86
-
87
-
88
- # #expid: 4.b # to be run
89
- # python -W ignore::UserWarning tools/train.py --cfg configs/selfattention_noise.yaml \
90
- # MODEL.SELFATTENTION.VERB_BASE_NOISE 1e-3 \
91
- # MODEL.SELFATTENTION.NOUN_BASE_NOISE 1e-2 \
92
- # MODEL.SELFATTENTION.ADD_NOISE_LAYERS "[0]" \
93
- # MODEL.SELFATTENTION.NOISE_TYPE "adaptive" \
94
- # SESSION 4.b_v1e3_n1e2_0_adaptive
95
-
96
-
97
- # #expid: 5.a
98
- # python -W ignore::UserWarning tools/train.py --cfg configs/selfattention_noise.yaml \
99
- # MODEL.SELFATTENTION.VERB_BASE_NOISE 1e-3 \
100
- # MODEL.SELFATTENTION.NOUN_BASE_NOISE 1e-3 \
101
- # MODEL.SELFATTENTION.ADD_NOISE_LAYERS "[0]" \
102
- # SESSION 5.a-v1e3_n1e3_0
103
-
104
- # #expid: 5.b # zekrom
105
- # python -W ignore::UserWarning tools/train.py --cfg configs/selfattention_noise.yaml \
106
- # MODEL.SELFATTENTION.VERB_BASE_NOISE 1e-3 \
107
- # MODEL.SELFATTENTION.NOUN_BASE_NOISE 1e-4 \
108
- # MODEL.SELFATTENTION.ADD_NOISE_LAYERS "[0]" \
109
- # SESSION 5.b-v1e3_n1e4_0
110
-
111
- #expid: 6.a
112
- python -W ignore::UserWarning tools/train.py --cfg configs/selfattention_noise.yaml \
113
- MODEL.SELFATTENTION.VERB_BASE_NOISE 1e-4 \
114
- MODEL.SELFATTENTION.NOUN_BASE_NOISE 1e-2 \
115
- MODEL.SELFATTENTION.ADD_NOISE_LAYERS "[1]" \
116
- SESSION 6.a-v1e4_n1e2_1
117
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
scripts/.ipynb_checkpoints/train_i3d_epic.sh DELETED
File without changes
scripts/.ipynb_checkpoints/try-checkpoint.ipynb DELETED
@@ -1,154 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": 1,
6
- "metadata": {},
7
- "outputs": [],
8
- "source": [
9
- "import math\n",
10
- "import numbers\n",
11
- "import torch\n",
12
- "from torch import nn\n",
13
- "from torch.nn import functional as F\n",
14
- "\n",
15
- "class GaussianSmoothing(nn.Module):\n",
16
- " \"\"\"\n",
17
- " Apply gaussian smoothing on a\n",
18
- " 1d, 2d or 3d tensor. Filtering is performed seperately for each channel\n",
19
- " in the input using a depthwise convolution.\n",
20
- " Arguments:\n",
21
- " channels (int, sequence): Number of channels of the input tensors. Output will\n",
22
- " have this number of channels as well.\n",
23
- " kernel_size (int, sequence): Size of the gaussian kernel.\n",
24
- " sigma (float, sequence): Standard deviation of the gaussian kernel.\n",
25
- " dim (int, optional): The number of dimensions of the data.\n",
26
- " Default value is 2 (spatial).\n",
27
- " \"\"\"\n",
28
- " def __init__(self, channels, kernel_size, sigma, dim=2):\n",
29
- " super(GaussianSmoothing, self).__init__()\n",
30
- " if isinstance(kernel_size, numbers.Number):\n",
31
- " kernel_size = [kernel_size] * dim\n",
32
- " if isinstance(sigma, numbers.Number):\n",
33
- " sigma = [sigma] * dim\n",
34
- "\n",
35
- " # The gaussian kernel is the product of the\n",
36
- " # gaussian function of each dimension.\n",
37
- " kernel = 1\n",
38
- " meshgrids = torch.meshgrid(\n",
39
- " [\n",
40
- " torch.arange(size, dtype=torch.float32)\n",
41
- " for size in kernel_size\n",
42
- " ]\n",
43
- " )\n",
44
- " for size, std, mgrid in zip(kernel_size, sigma, meshgrids):\n",
45
- " mean = (size - 1) / 2\n",
46
- " kernel *= 1 / (std * math.sqrt(2 * math.pi)) * \\\n",
47
- " torch.exp(-((mgrid - mean) / std) ** 2 / 2)\n",
48
- "\n",
49
- " # Make sure sum of values in gaussian kernel equals 1.\n",
50
- " kernel = kernel / torch.sum(kernel)\n",
51
- "\n",
52
- " # Reshape to depthwise convolutional weight\n",
53
- " kernel = kernel.view(1, 1, *kernel.size())\n",
54
- " kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1))\n",
55
- "\n",
56
- " self.register_buffer('weight', kernel)\n",
57
- " self.groups = channels\n",
58
- "\n",
59
- " if dim == 1:\n",
60
- " self.conv = F.conv1d\n",
61
- " elif dim == 2:\n",
62
- " self.conv = F.conv2d\n",
63
- " elif dim == 3:\n",
64
- " self.conv = F.conv3d\n",
65
- " else:\n",
66
- " raise RuntimeError(\n",
67
- " 'Only 1, 2 and 3 dimensions are supported. Received {}.'.format(dim)\n",
68
- " )\n",
69
- "\n",
70
- " def forward(self, input):\n",
71
- " \"\"\"\n",
72
- " Apply gaussian filter to input.\n",
73
- " Arguments:\n",
74
- " input (torch.Tensor): Input to apply gaussian filter on.\n",
75
- " Returns:\n",
76
- " filtered (torch.Tensor): Filtered output.\n",
77
- " \"\"\"\n",
78
- " return self.conv(input, weight=self.weight, groups=self.groups)"
79
- ]
80
- },
81
- {
82
- "cell_type": "code",
83
- "execution_count": 18,
84
- "metadata": {},
85
- "outputs": [],
86
- "source": [
87
- "smoothing = GaussianSmoothing(1024, 5, 1, dim=1)\n",
88
- "input = torch.rand(4, 16, 100, 64)\n",
89
- "b = input.shape[0]\n",
90
- "numhead = input.shape[1]\n",
91
- "t = input.shape[2]\n",
92
- "c = input.shape[3]\n",
93
- "input = input.permute(0,1,3,2)\n",
94
- "input = input.reshape(b, numhead*c, t)\n",
95
- "input = F.pad(input, (2, 2), mode='reflect')\n",
96
- "output = smoothing(input)\n",
97
- "output = output.reshape(b, numhead, c, t)\n",
98
- "output = output.permute(0,1,3,2)"
99
- ]
100
- },
101
- {
102
- "cell_type": "code",
103
- "execution_count": 19,
104
- "metadata": {},
105
- "outputs": [
106
- {
107
- "data": {
108
- "text/plain": [
109
- "torch.Size([4, 16, 100, 64])"
110
- ]
111
- },
112
- "execution_count": 19,
113
- "metadata": {},
114
- "output_type": "execute_result"
115
- }
116
- ],
117
- "source": [
118
- "input\n",
119
- "output.shape"
120
- ]
121
- },
122
- {
123
- "cell_type": "code",
124
- "execution_count": null,
125
- "metadata": {},
126
- "outputs": [],
127
- "source": [
128
- "input = torch.rand(4, 16, 100, 64)\n",
129
- "attention = torch.normal(0,1 size = input.shape)"
130
- ]
131
- }
132
- ],
133
- "metadata": {
134
- "kernelspec": {
135
- "display_name": "Python 3",
136
- "language": "python",
137
- "name": "python3"
138
- },
139
- "language_info": {
140
- "codemirror_mode": {
141
- "name": "ipython",
142
- "version": 3
143
- },
144
- "file_extension": ".py",
145
- "mimetype": "text/x-python",
146
- "name": "python",
147
- "nbconvert_exporter": "python",
148
- "pygments_lexer": "ipython3",
149
- "version": "3.8.3"
150
- }
151
- },
152
- "nbformat": 4,
153
- "nbformat_minor": 4
154
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
scripts/get_incorrect_samples.py DELETED
@@ -1,88 +0,0 @@
1
- r"""Compute active speaker detection performance for the AVA dataset.
2
- Please send any questions about this code to the Google Group ava-dataset-users:
3
- https://groups.google.com/forum/#!forum/ava-dataset-users
4
- Example usage:
5
- python -O get_ava_active_speaker_performance.py \
6
- -g testdata/eval.csv \
7
- -p testdata/predictions.csv \
8
- -v
9
- """
10
-
11
- from __future__ import absolute_import
12
- from __future__ import division
13
- from __future__ import print_function
14
-
15
- import argparse
16
- import logging
17
- import time, warnings
18
- import numpy as np
19
- import pandas as pd
20
- import matplotlib.pyplot as plt
21
- warnings.filterwarnings("ignore")
22
-
23
-
24
- def parse_arguments():
25
- """Parses command-line flags.
26
- Returns:
27
- args: a named tuple containing three file objects args.labelmap,
28
- args.groundtruth, and args.detections.
29
- """
30
- parser = argparse.ArgumentParser()
31
- parser.add_argument("-g",
32
- "--groundtruth",
33
- help="CSV file containing ground truth.",
34
- type=argparse.FileType("r"),
35
- required=True)
36
- parser.add_argument("-p",
37
- "--predictions",
38
- help="CSV file containing active speaker predictions.",
39
- type=argparse.FileType("r"),
40
- required=True)
41
- parser.add_argument("-v", "--verbose", help="Increase output verbosity.", action="store_true")
42
- return parser.parse_args()
43
-
44
-
45
- def run_evaluation(groundtruth, predictions):
46
- prediction = pd.read_csv(predictions)
47
- groundtruth = pd.read_csv(groundtruth)
48
- wrong_list = []
49
- num = 0
50
- audible_num = 0
51
- total = 0
52
- for i, row in prediction.iterrows():
53
- entity_id = row['entity_id']
54
- ts = row['frame_timestamp']
55
- if row['score'] < 0.5:
56
- label = "NOT_SPEAKING"
57
- else:
58
- label = "SPEAKING_AUDIBLE"
59
-
60
- true_label = groundtruth.loc[(groundtruth['entity_id'] == entity_id) &
61
- (groundtruth['frame_timestamp'] == ts)].iloc[0]["label"]
62
- if true_label != label:
63
- wrong_list.append([entity_id, ts, true_label, label])
64
-
65
- if label == "SPEAKING_AUDIBLE":
66
- num += 1
67
- if true_label == "SPEAKING_AUDIBLE":
68
- audible_num += 1
69
- total += 1
70
- print(num, audible_num, total)
71
-
72
- df = pd.DataFrame(wrong_list, columns=['entity_id', 'frame_timestamp', "gt", "prediction"])
73
- df = df.sort_values(by=["frame_timestamp"])
74
- df.to_csv("wrong_list.csv")
75
-
76
-
77
- def main():
78
- start = time.time()
79
- args = parse_arguments()
80
- if args.verbose:
81
- logging.basicConfig(level=logging.DEBUG)
82
- del args.verbose
83
- run_evaluation(**vars(args))
84
- logging.info("Computed in %s seconds", time.time() - start)
85
-
86
-
87
- if __name__ == "__main__":
88
- main()