--- license: cc-by-4.0 base_model: deepset/roberta-base-squad2 tags: - generated_from_trainer model-index: - name: shipping_qa_model_30_04_24 results: [] --- # shipping_qa_model_30_04_24 This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.8070 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 28 | 5.7792 | | No log | 2.0 | 56 | 5.4899 | | No log | 3.0 | 84 | 5.3744 | | No log | 4.0 | 112 | 5.2672 | | No log | 5.0 | 140 | 5.0586 | | No log | 6.0 | 168 | 4.8332 | | No log | 7.0 | 196 | 4.7809 | | No log | 8.0 | 224 | 4.7767 | | No log | 9.0 | 252 | 4.6233 | | No log | 10.0 | 280 | 4.5430 | | No log | 11.0 | 308 | 4.4714 | | No log | 12.0 | 336 | 4.3689 | | No log | 13.0 | 364 | 4.3410 | | No log | 14.0 | 392 | 4.2705 | | No log | 15.0 | 420 | 4.2760 | | No log | 16.0 | 448 | 4.1572 | | No log | 17.0 | 476 | 4.1465 | | 4.5743 | 18.0 | 504 | 4.0708 | | 4.5743 | 19.0 | 532 | 4.0196 | | 4.5743 | 20.0 | 560 | 4.0183 | | 4.5743 | 21.0 | 588 | 3.9759 | | 4.5743 | 22.0 | 616 | 3.9140 | | 4.5743 | 23.0 | 644 | 3.9308 | | 4.5743 | 24.0 | 672 | 3.8611 | | 4.5743 | 25.0 | 700 | 3.8159 | | 4.5743 | 26.0 | 728 | 3.8126 | | 4.5743 | 27.0 | 756 | 3.8272 | | 4.5743 | 28.0 | 784 | 3.8185 | | 4.5743 | 29.0 | 812 | 3.8074 | | 4.5743 | 30.0 | 840 | 3.8070 | ### Framework versions - Transformers 4.41.0.dev0 - Pytorch 2.2.2+cu118 - Datasets 2.18.0 - Tokenizers 0.19.1