File size: 5,926 Bytes
901225d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import streamlit as st
import cv2
import time
import tensorflow as tf
from tensorflow.keras.models import load_model
import numpy as np
from pygame import mixer
from datetime import datetime
model = load_model('Drowsiness_model_efficient.h5')
html_temp= """
<div style="background-color:tomato;padding:10px">
<h2 style="color:white;text-align:centre;">Drowsiness Detection App </h2>
</div>
"""
st.markdown(html_temp,unsafe_allow_html=True)
st.markdown(
"""
This app is developed for drowsiness detection. This app will raise an alarm if the person is drowsy.
"""
)
Warning="By selecting the check box you are agree to use our app.\nDon't worry!! We will not save your any data."
check=st.checkbox("I agree",help=Warning)
if(check):
st.write('Great!')
btn=st.button("Start")
st.write('Press (c) for ending the stream')
if btn:
#multiple cascades: https://github.com/Itseez/opencv/tree/master/data/haarcascades
#https://github.com/Itseez/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
#https://github.com/Itseez/opencv/blob/master/data/haarcascades/haarcascade_eye.xml
eye_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_eye.xml')
mixer.init()
sound= mixer.Sound(r'mixkit-digital-clock-digital-alarm-buzzer-992.wav')
cap = cv2.VideoCapture(0)
Score = 0
openScore = 0
while 1:
ret, img = cap.read()
height,width = img.shape[0:2]
frame = img
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, scaleFactor= 1.3, minNeighbors=2)
for (x,y,w,h) in faces:
cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
eye= img[y:y+h,x:x+w]
eye= cv2.resize(eye, (256 ,256))
im = tf.constant(eye, dtype = tf.float32)
img_array = tf.expand_dims(im, axis = 0)
prediction = model.predict(img_array)
print(np.argmax(prediction[0]))
# if eyes are closed
if np.argmax(prediction[0])<0.50:
cv2.putText(frame,'closed',(10,height-20),fontFace=cv2.FONT_HERSHEY_COMPLEX_SMALL,fontScale=1,color=(255,255,255),
thickness=1,lineType=cv2.LINE_AA)
cv2.putText(frame,'Score'+str(Score),(100,height-20),fontFace=cv2.FONT_HERSHEY_COMPLEX_SMALL,fontScale=1,color=(255,255,255),
thickness=1,lineType=cv2.LINE_AA)
Score=Score+1
if(Score>25):
try:
sound.play()
except:
pass
# if eyes are open
elif np.argmax(prediction[0])>0.60:
cv2.putText(frame,'open',(10,height-20),fontFace=cv2.FONT_HERSHEY_COMPLEX_SMALL,fontScale=1,color=(255,255,255),
thickness=1,lineType=cv2.LINE_AA)
cv2.putText(frame,'Score'+str(Score),(100,height-20),fontFace=cv2.FONT_HERSHEY_COMPLEX_SMALL,fontScale=1,color=(255,255,255),
thickness=1,lineType=cv2.LINE_AA)
Score = Score-1
openScore = openScore +1
if (Score<0 or openScore >8):
Score=0
cv2.imshow('frame',img)
if cv2.waitKey(33) & 0xFF==ord('c'):
break
cap.release()
cv2.destroyAllWindows()
st.text("Thanks for using")
if st.button("About"):
st.text("Created by Surendra Kumar")
## footer
from htbuilder import HtmlElement, div, ul, li, br, hr, a, p, img, styles, classes, fonts
from htbuilder.units import percent, px
from htbuilder.funcs import rgba, rgb
def image(src_as_string, **style):
return img(src=src_as_string, style=styles(**style))
def link(link, text, **style):
return a(_href=link, _target="_blank", style=styles(**style))(text)
def layout(*args):
style = """
<style>
# MainMenu {visibility: hidden;}
footer {visibility: hidden;}
.stApp { bottom: 105px; }
</style>
"""
style_div = styles(
position="fixed",
left=0,
bottom=0,
margin=px(0, 0, 0, 0),
width=percent(100),
color="black",
text_align="center",
height="auto",
opacity=1
)
style_hr = styles(
display="block",
margin=px(8, 8, "auto", "auto"),
border_style="solid",
border_width=px(0.5)
)
body = p()
foot = div(
style=style_div
)(
hr(
style=style_hr
),
body
)
st.markdown(style,unsafe_allow_html=True)
for arg in args:
if isinstance(arg, str):
body(arg)
elif isinstance(arg, HtmlElement):
body(arg)
st.markdown(str(foot), unsafe_allow_html=True)
def footer():
myargs = [
"©️ surendraKumar",
br(),
link("https://www.linkedin.com/in/surendra-kumar-51802022b", image('https://icons.getbootstrap.com/assets/icons/linkedin.svg') ),
br(),
link("https://www.instagram.com/im_surendra_dhaka/",image('https://icons.getbootstrap.com/assets/icons/instagram.svg')),
]
layout(*myargs)
if __name__ == "__main__":
footer() |