File size: 5,926 Bytes
901225d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import streamlit as st
import cv2
import time
import tensorflow as tf
from tensorflow.keras.models import load_model
import numpy as np
from pygame import mixer



from datetime import datetime
model = load_model('Drowsiness_model_efficient.h5')

html_temp= """
    <div style="background-color:tomato;padding:10px">
    <h2 style="color:white;text-align:centre;">Drowsiness Detection App </h2>
    </div>
    """
st.markdown(html_temp,unsafe_allow_html=True)

st.markdown(
   
    """
     This app is developed for drowsiness detection. This app will raise an alarm if the person is drowsy.
"""
)
Warning="By selecting the check box you are agree to use our app.\nDon't worry!! We will not save your any data."
check=st.checkbox("I agree",help=Warning)
if(check):
    st.write('Great!')
    btn=st.button("Start")
    st.write('Press (c) for ending the stream')
    if btn:
        
            #multiple cascades: https://github.com/Itseez/opencv/tree/master/data/haarcascades

            #https://github.com/Itseez/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
            face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')

            #https://github.com/Itseez/opencv/blob/master/data/haarcascades/haarcascade_eye.xml
            eye_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_eye.xml')
            mixer.init()
            sound= mixer.Sound(r'mixkit-digital-clock-digital-alarm-buzzer-992.wav')
            cap = cv2.VideoCapture(0)
            Score = 0
            openScore = 0
            while 1:

                ret, img = cap.read()
                height,width = img.shape[0:2]
                frame = img
                gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
                faces = face_cascade.detectMultiScale(gray, scaleFactor= 1.3, minNeighbors=2)

                for (x,y,w,h) in faces:
                    cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
                    roi_gray = gray[y:y+h, x:x+w]
                    roi_color = img[y:y+h, x:x+w]
                    eye= img[y:y+h,x:x+w]
                    eye= cv2.resize(eye, (256 ,256))
                    im = tf.constant(eye, dtype = tf.float32)
                    img_array = tf.expand_dims(im, axis = 0)
                    prediction = model.predict(img_array)
                    print(np.argmax(prediction[0]))

                    # if eyes are closed
                    if np.argmax(prediction[0])<0.50:
                        cv2.putText(frame,'closed',(10,height-20),fontFace=cv2.FONT_HERSHEY_COMPLEX_SMALL,fontScale=1,color=(255,255,255),
                                   thickness=1,lineType=cv2.LINE_AA)
                        cv2.putText(frame,'Score'+str(Score),(100,height-20),fontFace=cv2.FONT_HERSHEY_COMPLEX_SMALL,fontScale=1,color=(255,255,255),
                                   thickness=1,lineType=cv2.LINE_AA)
                        Score=Score+1
                        if(Score>25):
                            try:
                                sound.play()

                            except:
                                pass

                    # if eyes are open
                    elif np.argmax(prediction[0])>0.60:
                        cv2.putText(frame,'open',(10,height-20),fontFace=cv2.FONT_HERSHEY_COMPLEX_SMALL,fontScale=1,color=(255,255,255),
                                   thickness=1,lineType=cv2.LINE_AA)      
                        cv2.putText(frame,'Score'+str(Score),(100,height-20),fontFace=cv2.FONT_HERSHEY_COMPLEX_SMALL,fontScale=1,color=(255,255,255),
                                   thickness=1,lineType=cv2.LINE_AA)
                        Score = Score-1
                        openScore = openScore +1
                        if (Score<0 or openScore >8):
                            Score=0


                cv2.imshow('frame',img)

                if cv2.waitKey(33) & 0xFF==ord('c'):
                    break
            cap.release()
            cv2.destroyAllWindows()
            
            st.text("Thanks for using")
if st.button("About"):
        st.text("Created by Surendra Kumar")
## footer
from htbuilder import HtmlElement, div, ul, li, br, hr, a, p, img, styles, classes, fonts
from htbuilder.units import percent, px
from htbuilder.funcs import rgba, rgb


def image(src_as_string, **style):
    return img(src=src_as_string, style=styles(**style))


def link(link, text, **style):
    return a(_href=link, _target="_blank", style=styles(**style))(text)


def layout(*args):
    style = """
    <style>
      # MainMenu {visibility: hidden;}
      footer {visibility: hidden;}
     .stApp { bottom: 105px; }
    </style>
    """

    style_div = styles(
        position="fixed",
        left=0,
        bottom=0,
        margin=px(0, 0, 0, 0),
        width=percent(100),
        color="black",
        text_align="center",
        height="auto",
        opacity=1
    )

    style_hr = styles(
        display="block",
        margin=px(8, 8, "auto", "auto"),
        border_style="solid",
        border_width=px(0.5)
    )

    body = p()
    foot = div(
        style=style_div
    )(
        hr(
            style=style_hr
        ),
        body
    )
    st.markdown(style,unsafe_allow_html=True)

    for arg in args:
        if isinstance(arg, str):
            body(arg)

        elif isinstance(arg, HtmlElement):
            body(arg)

    st.markdown(str(foot), unsafe_allow_html=True)


def footer():
    myargs = [
        "©️ surendraKumar",
        br(),
        link("https://www.linkedin.com/in/surendra-kumar-51802022b", image('https://icons.getbootstrap.com/assets/icons/linkedin.svg') ),
        br(),
        link("https://www.instagram.com/im_surendra_dhaka/",image('https://icons.getbootstrap.com/assets/icons/instagram.svg')),
    ]
    layout(*myargs)

if __name__ == "__main__":
    footer()