Surya2706 commited on
Commit
8f560e2
Β·
verified Β·
1 Parent(s): 4fab8f7

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +100 -0
README.md ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ pipeline_tag: image-feature-extraction
6
+ ---
7
+ # MetaColorModel
8
+
9
+ ## Overview
10
+ MetaColorModel is a Hugging Face-compatible model designed to extract metadata and dominant colors from images. It is built using PyTorch and the Hugging Face `transformers` library, and can be used for image analysis tasks, such as understanding image properties and identifying the most prominent colors.
11
+
12
+ ## Model Details
13
+ - **Model Type**: Custom image feature extraction model
14
+ - **Configuration**: Includes parameters to specify the number of dominant colors (`k`), metadata size, and color size (e.g., RGB).
15
+ - **Dependencies**:
16
+ - `transformers`
17
+ - `Pillow`
18
+ - `numpy`
19
+
20
+ ## Example Use Case
21
+ The model can be used in:
22
+ - Image search and indexing
23
+ - Content moderation
24
+ - Color scheme analysis for design and marketing
25
+ - Metadata extraction for organizing photo libraries
26
+
27
+ ## Installation
28
+ To use this model, first install the required dependencies:
29
+ ```bash
30
+ pip install transformers Pillow numpy
31
+ ```
32
+
33
+ ## Usage
34
+
35
+ Here is an example of how to use MetaColorModel:
36
+
37
+ ```python
38
+ from transformers import AutoConfig
39
+ from meta_color_model import MetaColorModel
40
+
41
+ # Load the model
42
+ config = AutoConfig.from_pretrained("Surya2706/meta_color_model")
43
+ model = MetaColorModel.from_pretrained("Surya2706/meta_color_model", config=config)
44
+
45
+ # Input image path
46
+ image_path = "example_image.jpg"
47
+
48
+ # Extract metadata and dominant colors
49
+ result = model.forward(image_path)
50
+ print("Metadata:", result["metadata"])
51
+ print("Dominant Colors:", result["dominant_colors"])
52
+ ```
53
+
54
+ ## Inputs
55
+ - **Image Path**: A file path to the image you want to process.
56
+
57
+ ## Outputs
58
+ - **Metadata**: Extracted EXIF metadata (if available).
59
+ - **Dominant Colors**: A list of the top `k` dominant colors in RGB format.
60
+
61
+ ## Training
62
+ This model can be trained further or fine-tuned for specific tasks.
63
+
64
+ ### Dataset
65
+ To train or fine-tune the model, you can prepare a dataset of images and their metadata, structured as follows:
66
+ ```
67
+ data/
68
+ β”œβ”€β”€ images/
69
+ β”‚ β”œβ”€β”€ image1.jpg
70
+ β”‚ β”œβ”€β”€ image2.jpg
71
+ β”‚ └── ...
72
+ β”œβ”€β”€ metadata_colors.csv
73
+ ```
74
+
75
+ The `metadata_colors.csv` file should contain metadata and dominant color labels for the images.
76
+
77
+ ### Training Script
78
+ Use the `Trainer` class from Hugging Face or implement a custom PyTorch training loop to fine-tune the model.
79
+
80
+ ## License
81
+ This model is released under the Apache 2.0 License.
82
+
83
+ ## Citation
84
+ If you use this model in your work, please cite:
85
+ ```
86
+ @misc{MetaColorModel,
87
+ title={MetaColorModel: A Hugging Face-Compatible Image Analysis Model},
88
+ author={Surya},
89
+ year={2025},
90
+ publisher={Hugging Face},
91
+ howpublished={\url{https://huggingface.co/surya2706/image-metadata-extract}}
92
+ }
93
+ ```
94
+
95
+ ## Acknowledgments
96
+ - Built with the Hugging Face `transformers` library.
97
+ - Uses `Pillow` for image processing and `numpy` for numerical operations.
98
+
99
+ ## Feedback
100
+ For questions or feedback, please contact [[email protected]] or open an issue on the [GitHub repository](https://github.com/Surya2706/image-metadata-extract).