Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
pipeline_tag: image-feature-extraction
|
6 |
+
---
|
7 |
+
# MetaColorModel
|
8 |
+
|
9 |
+
## Overview
|
10 |
+
MetaColorModel is a Hugging Face-compatible model designed to extract metadata and dominant colors from images. It is built using PyTorch and the Hugging Face `transformers` library, and can be used for image analysis tasks, such as understanding image properties and identifying the most prominent colors.
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
- **Model Type**: Custom image feature extraction model
|
14 |
+
- **Configuration**: Includes parameters to specify the number of dominant colors (`k`), metadata size, and color size (e.g., RGB).
|
15 |
+
- **Dependencies**:
|
16 |
+
- `transformers`
|
17 |
+
- `Pillow`
|
18 |
+
- `numpy`
|
19 |
+
|
20 |
+
## Example Use Case
|
21 |
+
The model can be used in:
|
22 |
+
- Image search and indexing
|
23 |
+
- Content moderation
|
24 |
+
- Color scheme analysis for design and marketing
|
25 |
+
- Metadata extraction for organizing photo libraries
|
26 |
+
|
27 |
+
## Installation
|
28 |
+
To use this model, first install the required dependencies:
|
29 |
+
```bash
|
30 |
+
pip install transformers Pillow numpy
|
31 |
+
```
|
32 |
+
|
33 |
+
## Usage
|
34 |
+
|
35 |
+
Here is an example of how to use MetaColorModel:
|
36 |
+
|
37 |
+
```python
|
38 |
+
from transformers import AutoConfig
|
39 |
+
from meta_color_model import MetaColorModel
|
40 |
+
|
41 |
+
# Load the model
|
42 |
+
config = AutoConfig.from_pretrained("Surya2706/meta_color_model")
|
43 |
+
model = MetaColorModel.from_pretrained("Surya2706/meta_color_model", config=config)
|
44 |
+
|
45 |
+
# Input image path
|
46 |
+
image_path = "example_image.jpg"
|
47 |
+
|
48 |
+
# Extract metadata and dominant colors
|
49 |
+
result = model.forward(image_path)
|
50 |
+
print("Metadata:", result["metadata"])
|
51 |
+
print("Dominant Colors:", result["dominant_colors"])
|
52 |
+
```
|
53 |
+
|
54 |
+
## Inputs
|
55 |
+
- **Image Path**: A file path to the image you want to process.
|
56 |
+
|
57 |
+
## Outputs
|
58 |
+
- **Metadata**: Extracted EXIF metadata (if available).
|
59 |
+
- **Dominant Colors**: A list of the top `k` dominant colors in RGB format.
|
60 |
+
|
61 |
+
## Training
|
62 |
+
This model can be trained further or fine-tuned for specific tasks.
|
63 |
+
|
64 |
+
### Dataset
|
65 |
+
To train or fine-tune the model, you can prepare a dataset of images and their metadata, structured as follows:
|
66 |
+
```
|
67 |
+
data/
|
68 |
+
βββ images/
|
69 |
+
β βββ image1.jpg
|
70 |
+
β βββ image2.jpg
|
71 |
+
β βββ ...
|
72 |
+
βββ metadata_colors.csv
|
73 |
+
```
|
74 |
+
|
75 |
+
The `metadata_colors.csv` file should contain metadata and dominant color labels for the images.
|
76 |
+
|
77 |
+
### Training Script
|
78 |
+
Use the `Trainer` class from Hugging Face or implement a custom PyTorch training loop to fine-tune the model.
|
79 |
+
|
80 |
+
## License
|
81 |
+
This model is released under the Apache 2.0 License.
|
82 |
+
|
83 |
+
## Citation
|
84 |
+
If you use this model in your work, please cite:
|
85 |
+
```
|
86 |
+
@misc{MetaColorModel,
|
87 |
+
title={MetaColorModel: A Hugging Face-Compatible Image Analysis Model},
|
88 |
+
author={Surya},
|
89 |
+
year={2025},
|
90 |
+
publisher={Hugging Face},
|
91 |
+
howpublished={\url{https://huggingface.co/surya2706/image-metadata-extract}}
|
92 |
+
}
|
93 |
+
```
|
94 |
+
|
95 |
+
## Acknowledgments
|
96 |
+
- Built with the Hugging Face `transformers` library.
|
97 |
+
- Uses `Pillow` for image processing and `numpy` for numerical operations.
|
98 |
+
|
99 |
+
## Feedback
|
100 |
+
For questions or feedback, please contact [[email protected]] or open an issue on the [GitHub repository](https://github.com/Surya2706/image-metadata-extract).
|