File size: 1,215 Bytes
d7d4301
 
85b0c42
 
d7d4301
85b0c42
 
 
 
 
 
d7d4301
 
85b0c42
 
d7d4301
85b0c42
d7d4301
85b0c42
d7d4301
85b0c42
d7d4301
85b0c42
d7d4301
85b0c42
d7d4301
85b0c42
d7d4301
85b0c42
d7d4301
85b0c42
d7d4301
85b0c42
d7d4301
85b0c42
d7d4301
85b0c42
 
 
 
 
 
 
 
 
 
 
d7d4301
85b0c42
d7d4301
 
 
 
 
85b0c42
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
base_model: google/paligemma-3b-pt-224
datasets:
- arrow
library_name: peft
license: gemma
tags:
- generated_from_trainer
model-index:
- name: MEDVQACpaligemma
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# MEDVQACpaligemma

This model is a fine-tuned version of [google/paligemma-3b-pt-224](https://huggingface.co/google/paligemma-3b-pt-224) on the arrow dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 3

### Training results



### Framework versions

- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.1
- Datasets 2.19.1
- Tokenizers 0.19.1