File size: 1,215 Bytes
d7d4301 85b0c42 d7d4301 85b0c42 d7d4301 85b0c42 d7d4301 85b0c42 d7d4301 85b0c42 d7d4301 85b0c42 d7d4301 85b0c42 d7d4301 85b0c42 d7d4301 85b0c42 d7d4301 85b0c42 d7d4301 85b0c42 d7d4301 85b0c42 d7d4301 85b0c42 d7d4301 85b0c42 d7d4301 85b0c42 d7d4301 85b0c42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
---
base_model: google/paligemma-3b-pt-224
datasets:
- arrow
library_name: peft
license: gemma
tags:
- generated_from_trainer
model-index:
- name: MEDVQACpaligemma
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MEDVQACpaligemma
This model is a fine-tuned version of [google/paligemma-3b-pt-224](https://huggingface.co/google/paligemma-3b-pt-224) on the arrow dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 3
### Training results
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.1
- Datasets 2.19.1
- Tokenizers 0.19.1 |