Svetlana0303
commited on
Commit
·
2b86d6f
1
Parent(s):
5abd1d3
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: Regression_xlnet_NOaug_MSEloss
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# Regression_xlnet_NOaug_MSEloss
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.6460
|
20 |
+
- Mse: 0.6460
|
21 |
+
- Mae: 0.7041
|
22 |
+
- R2: -0.1893
|
23 |
+
- Accuracy: 0.2632
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 1e-12
|
43 |
+
- train_batch_size: 4
|
44 |
+
- eval_batch_size: 4
|
45 |
+
- seed: 42
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 15
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy |
|
53 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------:|:--------:|
|
54 |
+
| No log | 1.0 | 33 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 |
|
55 |
+
| No log | 2.0 | 66 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 |
|
56 |
+
| No log | 3.0 | 99 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 |
|
57 |
+
| No log | 4.0 | 132 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 |
|
58 |
+
| No log | 5.0 | 165 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 |
|
59 |
+
| No log | 6.0 | 198 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 |
|
60 |
+
| No log | 7.0 | 231 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 |
|
61 |
+
| No log | 8.0 | 264 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 |
|
62 |
+
| No log | 9.0 | 297 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 |
|
63 |
+
| No log | 10.0 | 330 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 |
|
64 |
+
| No log | 11.0 | 363 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 |
|
65 |
+
| No log | 12.0 | 396 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 |
|
66 |
+
| No log | 13.0 | 429 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 |
|
67 |
+
| No log | 14.0 | 462 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 |
|
68 |
+
| No log | 15.0 | 495 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 |
|
69 |
+
|
70 |
+
|
71 |
+
### Framework versions
|
72 |
+
|
73 |
+
- Transformers 4.28.1
|
74 |
+
- Pytorch 2.0.0+cu118
|
75 |
+
- Datasets 2.12.0
|
76 |
+
- Tokenizers 0.13.3
|