File size: 2,542 Bytes
aae5e06
 
 
 
7fc72d2
aae5e06
 
 
 
 
 
 
9d4921a
7fc72d2
 
 
aae5e06
 
b477eb9
 
835b8fc
b477eb9
aae5e06
 
 
 
 
5ebcc8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a5f9f8
5ebcc8e
5a5f9f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aae5e06
 
7fc72d2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
base_model: unsloth/mistral-7b-v0.3-bnb-4bit
language:
- en
- kg
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
- sft
datasets:
- wikimedia/wikipedia
- Svngoku/xP3x-Kongo
---

# Kongostral

Kongostral is a continious pretrained version of the mistral model (`Mistral v3`) on Kikongo Wikipedia Corpus and fine-tuned on Kikongo Translated text from xP3x using the alcapa format.
The goal of this model is to produce a SOTA model who can easily predict the next token on Kikongo sentences and produce instruction base text generation.

- **Developed by:** Svngoku
- **License:** apache-2.0
- **Finetuned from model :** unsloth/mistral-7b-v0.3-bnb-4bit


## Inference with Unsloth
```py
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
inputs = tokenizer([
    alpaca_prompt.format(
        #"", # instruction
        "Inki bima ke salaka ba gâteau ya pomme ya nsungi ?", # instruction
        "", # output - leave this blank for generation!
    )],
    return_tensors="pt").to("cuda")

outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
tokenizer.batch_decode(outputs)
```

## Inference with Transformers 🤗

```sh
!pip install -q -U bitsandbytes
!pip install -q -U git+https://github.com/huggingface/transformers.git
!pip install -q -U git+https://github.com/huggingface/peft.git
!pip install -q -U git+https://github.com/huggingface/accelerate.git
```

```py
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import torch

quantization_config = BitsAndBytesConfig(
  load_in_4bit=True,
  bnb_4bit_compute_dtype=torch.bfloat16
)

tokenizer = AutoTokenizer.from_pretrained("Svngoku/kongostral")
model = AutoModelForCausalLM.from_pretrained("Svngoku/kongostral", quantization_config=quantization_config)

prompt = "Inki kele Nsangu ya kisika yai ?"

model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda")

generated_ids = model.generate(**model_inputs, max_new_tokens=500, do_sample=True)
tokenizer.batch_decode(generated_ids)[0]

```


## Observation

The model may produce results that are not accurate as requested by the user.
There is still work to be done to align and get more accurate results.

### Note
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.

[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)