Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- landing_PPO.zip +3 -0
- landing_PPO/_stable_baselines3_version +1 -0
- landing_PPO/data +94 -0
- landing_PPO/policy.optimizer.pth +3 -0
- landing_PPO/policy.pth +3 -0
- landing_PPO/pytorch_variables.pth +3 -0
- landing_PPO/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 239.22 +/- 13.04
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f13db950ef0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f13db950f80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f13db952050>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f13db9520e0>", "_build": "<function ActorCriticPolicy._build at 0x7f13db952170>", "forward": "<function ActorCriticPolicy.forward at 0x7f13db952200>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f13db952290>", "_predict": "<function ActorCriticPolicy._predict at 0x7f13db952320>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f13db9523b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f13db952440>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f13db9524d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f13db998bd0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1669130603605920578, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGb7Az1OzKQ/UNZ2PjSV876SqCg98k2ZPQAAAAAAAAAAgAs0vY+CErpP2pI42lk7M1iW+7r3Oau3AACAPwAAgD960ge+uLKluyL4rzznxn69U743Pa4GDz8AAIA/AACAP7oWQb629368tWtuu/9Sr7lm3OU9NDiNOgAAgD8AAIA/bThBvsXmxzzM1sI8KvqPPMEloL7AJr09AACAPwAAgD8GCxs+7oKDPxLsTD7hDAW/ZSnoPVM7XboAAAAAAAAAAM3NpD0pXCG62ARkPAlsmzY/0AA7AvqaNQAAgD8AAIA/Wm+yPY9GWrpOdQ253kycs/Fl4rlAYSE4AACAPwAAgD/gGQW+Mls1P+1ijj3Dd7O+yTsYPd1QAz4AAAAAAAAAAC35M75Sf+K7Jvheu5boGLlsCUQ9boMAOgAAgD8AAIA/zS8xPUg9krpiahi4iXMJMuSfNrvwZC03AACAPwAAgD/2voI+yPZrP5udiz6da8a+k6R7Pu7TyLwAAAAAAAAAAGDdWL4u3vq8i5p2OTZrFDjmBF8+fvuluAAAgD8AAIA/JgfOPVxTYbqLsAY8gh2mtUrdlzoYRaC0AACAPwAAgD8AsYS9Hw3nuQMDHzgrICSy1yRbu/3vObcAAIA/AACAP26MhL60s6q8GiCFuqCAw7hL4RY+7BihOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIH2XEBaDkXECUhpRSlIwBbJRN6AOMAXSUR0CQ04ejmCAddX2UKGgGaAloD0MIiKBq9GqsXECUhpRSlGgVTegDaBZHQJDUuSeRPoF1fZQoaAZoCWgPQwjKMy+H3acTwJSGlFKUaBVNLgFoFkdAkNanpr1ui3V9lChoBmgJaA9DCDnx1Y7i61RAlIaUUpRoFU3oA2gWR0CQ2nYvnKW+dX2UKGgGaAloD0MIOzdtxmnjXECUhpRSlGgVTegDaBZHQJDcadEsrd51fZQoaAZoCWgPQwg+BitONTdiQJSGlFKUaBVN6ANoFkdAkOBAHqu8snV9lChoBmgJaA9DCHui68IPUGBAlIaUUpRoFU3oA2gWR0CQ5rdQwblzdX2UKGgGaAloD0MI+uyA64pRWECUhpRSlGgVTegDaBZHQJDsDu1F6Rh1fZQoaAZoCWgPQwhXJZF9kA9eQJSGlFKUaBVN6ANoFkdAkPE4ToMa0nV9lChoBmgJaA9DCCy5isVvR2NAlIaUUpRoFU3oA2gWR0CQ8l/kvK2bdX2UKGgGaAloD0MIks8rnvpCZkCUhpRSlGgVTegDaBZHQJDzbWFvhqF1fZQoaAZoCWgPQwg3ww34/AxeQJSGlFKUaBVN6ANoFkdAkV02IwdsBXV9lChoBmgJaA9DCAmM9Q1MQ15AlIaUUpRoFU3oA2gWR0CRXfOSW7e3dX2UKGgGaAloD0MIpPs5Bfl5IUCUhpRSlGgVTTYBaBZHQJFe1lmOEM91fZQoaAZoCWgPQwhlxAWgUX9fQJSGlFKUaBVN6ANoFkdAkV+mFBY3enV9lChoBmgJaA9DCIUn9PqTdW9AlIaUUpRoFU2FAmgWR0CRYb9nbqQjdX2UKGgGaAloD0MIyT1d3TEpYUCUhpRSlGgVTegDaBZHQJFnQJY1YQt1fZQoaAZoCWgPQwizI9V3fkRbQJSGlFKUaBVN6ANoFkdAkWpR5ooNNXV9lChoBmgJaA9DCEF+NnKdA3BAlIaUUpRoFU1WA2gWR0CRalULlV94dX2UKGgGaAloD0MI845TdKS9b0CUhpRSlGgVTckBaBZHQJFrrHktEoh1fZQoaAZoCWgPQwi+g584gK4mQJSGlFKUaBVNLQFoFkdAkXFzXSSeRXV9lChoBmgJaA9DCFor2hznq2JAlIaUUpRoFU3oA2gWR0CRdt0zj3mFdX2UKGgGaAloD0MIw0maP6Z9JkCUhpRSlGgVS85oFkdAkXp8Xm/34HV9lChoBmgJaA9DCD3yBwNPwWBAlIaUUpRoFU3oA2gWR0CRf752Qnx8dX2UKGgGaAloD0MInWaBdodKWECUhpRSlGgVTegDaBZHQJGB4G6f8Mx1fZQoaAZoCWgPQwgDCvX0kUlgQJSGlFKUaBVN6ANoFkdAkYY9qQA+6nV9lChoBmgJaA9DCMR5OIHpAW9AlIaUUpRoFU1OA2gWR0CRl8I7eVLSdX2UKGgGaAloD0MIB0Dc1atGbECUhpRSlGgVTdQBaBZHQJGZd/qgRK91fZQoaAZoCWgPQwggKLftew9jQJSGlFKUaBVN6ANoFkdAkZp3qNZNf3V9lChoBmgJaA9DCFqdnKG4xWJAlIaUUpRoFU3oA2gWR0CRm7D4QBgedX2UKGgGaAloD0MIyLPLt74wYECUhpRSlGgVTegDaBZHQJGc0kOZssR1fZQoaAZoCWgPQwhens4VJRxsQJSGlFKUaBVN+gJoFkdAkaGdS/CZW3V9lChoBmgJaA9DCPA2b5wUBWNAlIaUUpRoFU3oA2gWR0CRompwS8J2dX2UKGgGaAloD0MIl+MViJ5DX0CUhpRSlGgVTegDaBZHQJGjLvDxb0R1fZQoaAZoCWgPQwjkZU0s8KJXQJSGlFKUaBVN6ANoFkdAkaXfO+qR2nV9lChoBmgJaA9DCPFkNzP6HmtAlIaUUpRoFU0oAmgWR0CRqcWYnfEXdX2UKGgGaAloD0MIQKAzaVNMXECUhpRSlGgVTegDaBZHQJGrP8GcFyJ1fZQoaAZoCWgPQwgUzQNY5FFuQJSGlFKUaBVNdwFoFkdAka1SFoL5RHV9lChoBmgJaA9DCLbZWIl501tAlIaUUpRoFU3oA2gWR0CRr2u14Pf9dX2UKGgGaAloD0MIs3qH26F9XkCUhpRSlGgVTegDaBZHQJGz83T/hl11fZQoaAZoCWgPQwiAD167NBBjQJSGlFKUaBVN6ANoFkdAkbmLeANG3HV9lChoBmgJaA9DCDRlpx8UAHJAlIaUUpRoFU1NAmgWR0CRvF89Oh0ydX2UKGgGaAloD0MI1m670FwjW0CUhpRSlGgVTegDaBZHQJG89Hd43WF1fZQoaAZoCWgPQwj/ImjMJL9kQJSGlFKUaBVN6ANoFkdAkb7h0+1SfnV9lChoBmgJaA9DCFEwYwrWWA3AlIaUUpRoFU0RAWgWR0CRw3fLs8gZdX2UKGgGaAloD0MI2V92Tx4rckCUhpRSlGgVTZ4CaBZHQJHHN+F10T11fZQoaAZoCWgPQwg8odefxDxdQJSGlFKUaBVN6ANoFkdAkdJfN7jT8nV9lChoBmgJaA9DCCUi/Iuggl1AlIaUUpRoFU3oA2gWR0CR0y7EYO2BdX2UKGgGaAloD0MIjEtV2mIqa0CUhpRSlGgVTXgCaBZHQJHTo/jbSJF1fZQoaAZoCWgPQwiHiJtTyXpeQJSGlFKUaBVN6ANoFkdAkdUZG8VYZHV9lChoBmgJaA9DCGdEaW/wOGRAlIaUUpRoFU3oA2gWR0CR2Wz67/XHdX2UKGgGaAloD0MIOKJ71jXzYECUhpRSlGgVTegDaBZHQJHa9LJ0W/J1fZQoaAZoCWgPQwgiVKnZgz1jQJSGlFKUaBVN6ANoFkdAkj1T2Bas63V9lChoBmgJaA9DCLgBnx9G2W1AlIaUUpRoFU0zAmgWR0CSPiduHerNdX2UKGgGaAloD0MItFVJZB+zbkCUhpRSlGgVTa0BaBZHQJI+3UWl/H51fZQoaAZoCWgPQwj+0TdpGkwrwJSGlFKUaBVL82gWR0CSP+KuB+WodX2UKGgGaAloD0MIT64pkNkuYECUhpRSlGgVTegDaBZHQJJAokSmIj51fZQoaAZoCWgPQwjnFyXoL/5eQJSGlFKUaBVN6ANoFkdAkkHpmqYJFHV9lChoBmgJaA9DCG40gLfAHmxAlIaUUpRoFU3lA2gWR0CSQ1vVmSQpdX2UKGgGaAloD0MIMqt3uB3hbECUhpRSlGgVTQsDaBZHQJJFzV5KODJ1fZQoaAZoCWgPQwjjN4WVCuVvQJSGlFKUaBVNSQNoFkdAkkZjAzpHJHV9lChoBmgJaA9DCOV7RiJ0tXBAlIaUUpRoFU2QAWgWR0CSR/VBUrCndX2UKGgGaAloD0MIT+lg/R9bbkCUhpRSlGgVTTsDaBZHQJJIauq3mV91fZQoaAZoCWgPQwgdBB2tagn8v5SGlFKUaBVL4GgWR0CSSL8274BWdX2UKGgGaAloD0MIkbWGUnv0bkCUhpRSlGgVTeIBaBZHQJJTU1+AmRh1fZQoaAZoCWgPQwj+YrZk1R5xQJSGlFKUaBVNywJoFkdAklsl3t8eCHV9lChoBmgJaA9DCP3a+um/r21AlIaUUpRoFU26AWgWR0CSWyGMGX5WdX2UKGgGaAloD0MIQKN06V9vXkCUhpRSlGgVTegDaBZHQJJcb8k2P1d1fZQoaAZoCWgPQwham8b2mhFyQJSGlFKUaBVNygJoFkdAkmIccIZ62XV9lChoBmgJaA9DCIEjgQabI2xAlIaUUpRoFU1/AmgWR0CSZXajvd/KdX2UKGgGaAloD0MIBpylZDkxOUCUhpRSlGgVTSIBaBZHQJJmu7VawEB1fZQoaAZoCWgPQwhKKH0h5HtuQJSGlFKUaBVNGAJoFkdAkmcYa5wwTXV9lChoBmgJaA9DCAx3Loz0UnBAlIaUUpRoFU2lAmgWR0CSaaqG1x82dX2UKGgGaAloD0MIEeULWki7WUCUhpRSlGgVTegDaBZHQJJqKG9Htnh1fZQoaAZoCWgPQwhzZyYYTnJrQJSGlFKUaBVNvQNoFkdAknH/IKc/dXV9lChoBmgJaA9DCHbhB+dTY25AlIaUUpRoFU35AmgWR0CSck+K0lZ6dX2UKGgGaAloD0MI+dfyyvVHYECUhpRSlGgVTegDaBZHQJJ072i+L3t1fZQoaAZoCWgPQwipFDsaR3hwQJSGlFKUaBVNCAJoFkdAknbhqXWvsHV9lChoBmgJaA9DCMk4RrIHpXBAlIaUUpRoFU2kAWgWR0CSdrKk2xY8dX2UKGgGaAloD0MIBn+/mO2PcECUhpRSlGgVTcABaBZHQJJ7UyxiXpp1fZQoaAZoCWgPQwibHhSUotFjQJSGlFKUaBVN6ANoFkdAknsY1k1/D3V9lChoBmgJaA9DCAngZvHiRmFAlIaUUpRoFU3oA2gWR0CSf+ll9SdfdX2UKGgGaAloD0MIwCFUqdk3XUCUhpRSlGgVTegDaBZHQJKAZlEqlP91fZQoaAZoCWgPQwizmq4nuoZuQJSGlFKUaBVNzwFoFkdAkoCh6F/QSnV9lChoBmgJaA9DCM+HZwmya2JAlIaUUpRoFU3oA2gWR0CSgLk+otL+dX2UKGgGaAloD0MIHhfVIqJoL8CUhpRSlGgVTQEBaBZHQJKBe+cpb2V1fZQoaAZoCWgPQwhzf/W470VuQJSGlFKUaBVNYQFoFkdAkoL1eSjgynV9lChoBmgJaA9DCBoYeVmTVGxAlIaUUpRoFU3bAmgWR0CSiSjFhodudX2UKGgGaAloD0MI9fbnoiEwX0CUhpRSlGgVTegDaBZHQJKMvXRPXTV1fZQoaAZoCWgPQwjJVwIpsVFhQJSGlFKUaBVN6ANoFkdAkoygPNFBp3V9lChoBmgJaA9DCHNKQExCmG5AlIaUUpRoFU3JAWgWR0CSkOPkq+ajdX2UKGgGaAloD0MIZVWEmwy+cECUhpRSlGgVTY8BaBZHQJKTErwvxpd1fZQoaAZoCWgPQwjhRV9BGsVuQJSGlFKUaBVNhwFoFkdAkpOHgUDdQHV9lChoBmgJaA9DCEop6PaSaF5AlIaUUpRoFU3oA2gWR0CSl5+hGpdbdX2UKGgGaAloD0MIJclzfR8ac0CUhpRSlGgVTToBaBZHQJKZqXzDn/11fZQoaAZoCWgPQwjW/WMhOqVbQJSGlFKUaBVN6ANoFkdAkpp3/giu+3V9lChoBmgJaA9DCJPjTungGGxAlIaUUpRoFU1oA2gWR0CSorSamXPadX2UKGgGaAloD0MIYmU08vl7YUCUhpRSlGgVTegDaBZHQJKlAQ2/BWR1fZQoaAZoCWgPQwgYl6q0RTdvQJSGlFKUaBVNtQJoFkdAkqUyKiwjdHV9lChoBmgJaA9DCHdqLjdYpHBAlIaUUpRoFU1nAWgWR0CSpzOU+s5odWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
landing_PPO.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e55f116718c6f0c11cf4fa8fd61e1879233665c810607dd2e6bb2d2f518546d4
|
3 |
+
size 147148
|
landing_PPO/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
landing_PPO/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f13db950ef0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f13db950f80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f13db952050>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f13db9520e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f13db952170>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f13db952200>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f13db952290>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f13db952320>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f13db9523b0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f13db952440>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f13db9524d0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f13db998bd0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 524288,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1669130603605920578,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGb7Az1OzKQ/UNZ2PjSV876SqCg98k2ZPQAAAAAAAAAAgAs0vY+CErpP2pI42lk7M1iW+7r3Oau3AACAPwAAgD960ge+uLKluyL4rzznxn69U743Pa4GDz8AAIA/AACAP7oWQb629368tWtuu/9Sr7lm3OU9NDiNOgAAgD8AAIA/bThBvsXmxzzM1sI8KvqPPMEloL7AJr09AACAPwAAgD8GCxs+7oKDPxLsTD7hDAW/ZSnoPVM7XboAAAAAAAAAAM3NpD0pXCG62ARkPAlsmzY/0AA7AvqaNQAAgD8AAIA/Wm+yPY9GWrpOdQ253kycs/Fl4rlAYSE4AACAPwAAgD/gGQW+Mls1P+1ijj3Dd7O+yTsYPd1QAz4AAAAAAAAAAC35M75Sf+K7Jvheu5boGLlsCUQ9boMAOgAAgD8AAIA/zS8xPUg9krpiahi4iXMJMuSfNrvwZC03AACAPwAAgD/2voI+yPZrP5udiz6da8a+k6R7Pu7TyLwAAAAAAAAAAGDdWL4u3vq8i5p2OTZrFDjmBF8+fvuluAAAgD8AAIA/JgfOPVxTYbqLsAY8gh2mtUrdlzoYRaC0AACAPwAAgD8AsYS9Hw3nuQMDHzgrICSy1yRbu/3vObcAAIA/AACAP26MhL60s6q8GiCFuqCAw7hL4RY+7BihOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.04857599999999995,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIH2XEBaDkXECUhpRSlIwBbJRN6AOMAXSUR0CQ04ejmCAddX2UKGgGaAloD0MIiKBq9GqsXECUhpRSlGgVTegDaBZHQJDUuSeRPoF1fZQoaAZoCWgPQwjKMy+H3acTwJSGlFKUaBVNLgFoFkdAkNanpr1ui3V9lChoBmgJaA9DCDnx1Y7i61RAlIaUUpRoFU3oA2gWR0CQ2nYvnKW+dX2UKGgGaAloD0MIOzdtxmnjXECUhpRSlGgVTegDaBZHQJDcadEsrd51fZQoaAZoCWgPQwg+BitONTdiQJSGlFKUaBVN6ANoFkdAkOBAHqu8snV9lChoBmgJaA9DCHui68IPUGBAlIaUUpRoFU3oA2gWR0CQ5rdQwblzdX2UKGgGaAloD0MI+uyA64pRWECUhpRSlGgVTegDaBZHQJDsDu1F6Rh1fZQoaAZoCWgPQwhXJZF9kA9eQJSGlFKUaBVN6ANoFkdAkPE4ToMa0nV9lChoBmgJaA9DCCy5isVvR2NAlIaUUpRoFU3oA2gWR0CQ8l/kvK2bdX2UKGgGaAloD0MIks8rnvpCZkCUhpRSlGgVTegDaBZHQJDzbWFvhqF1fZQoaAZoCWgPQwg3ww34/AxeQJSGlFKUaBVN6ANoFkdAkV02IwdsBXV9lChoBmgJaA9DCAmM9Q1MQ15AlIaUUpRoFU3oA2gWR0CRXfOSW7e3dX2UKGgGaAloD0MIpPs5Bfl5IUCUhpRSlGgVTTYBaBZHQJFe1lmOEM91fZQoaAZoCWgPQwhlxAWgUX9fQJSGlFKUaBVN6ANoFkdAkV+mFBY3enV9lChoBmgJaA9DCIUn9PqTdW9AlIaUUpRoFU2FAmgWR0CRYb9nbqQjdX2UKGgGaAloD0MIyT1d3TEpYUCUhpRSlGgVTegDaBZHQJFnQJY1YQt1fZQoaAZoCWgPQwizI9V3fkRbQJSGlFKUaBVN6ANoFkdAkWpR5ooNNXV9lChoBmgJaA9DCEF+NnKdA3BAlIaUUpRoFU1WA2gWR0CRalULlV94dX2UKGgGaAloD0MI845TdKS9b0CUhpRSlGgVTckBaBZHQJFrrHktEoh1fZQoaAZoCWgPQwi+g584gK4mQJSGlFKUaBVNLQFoFkdAkXFzXSSeRXV9lChoBmgJaA9DCFor2hznq2JAlIaUUpRoFU3oA2gWR0CRdt0zj3mFdX2UKGgGaAloD0MIw0maP6Z9JkCUhpRSlGgVS85oFkdAkXp8Xm/34HV9lChoBmgJaA9DCD3yBwNPwWBAlIaUUpRoFU3oA2gWR0CRf752Qnx8dX2UKGgGaAloD0MInWaBdodKWECUhpRSlGgVTegDaBZHQJGB4G6f8Mx1fZQoaAZoCWgPQwgDCvX0kUlgQJSGlFKUaBVN6ANoFkdAkYY9qQA+6nV9lChoBmgJaA9DCMR5OIHpAW9AlIaUUpRoFU1OA2gWR0CRl8I7eVLSdX2UKGgGaAloD0MIB0Dc1atGbECUhpRSlGgVTdQBaBZHQJGZd/qgRK91fZQoaAZoCWgPQwggKLftew9jQJSGlFKUaBVN6ANoFkdAkZp3qNZNf3V9lChoBmgJaA9DCFqdnKG4xWJAlIaUUpRoFU3oA2gWR0CRm7D4QBgedX2UKGgGaAloD0MIyLPLt74wYECUhpRSlGgVTegDaBZHQJGc0kOZssR1fZQoaAZoCWgPQwhens4VJRxsQJSGlFKUaBVN+gJoFkdAkaGdS/CZW3V9lChoBmgJaA9DCPA2b5wUBWNAlIaUUpRoFU3oA2gWR0CRompwS8J2dX2UKGgGaAloD0MIl+MViJ5DX0CUhpRSlGgVTegDaBZHQJGjLvDxb0R1fZQoaAZoCWgPQwjkZU0s8KJXQJSGlFKUaBVN6ANoFkdAkaXfO+qR2nV9lChoBmgJaA9DCPFkNzP6HmtAlIaUUpRoFU0oAmgWR0CRqcWYnfEXdX2UKGgGaAloD0MIQKAzaVNMXECUhpRSlGgVTegDaBZHQJGrP8GcFyJ1fZQoaAZoCWgPQwgUzQNY5FFuQJSGlFKUaBVNdwFoFkdAka1SFoL5RHV9lChoBmgJaA9DCLbZWIl501tAlIaUUpRoFU3oA2gWR0CRr2u14Pf9dX2UKGgGaAloD0MIs3qH26F9XkCUhpRSlGgVTegDaBZHQJGz83T/hl11fZQoaAZoCWgPQwiAD167NBBjQJSGlFKUaBVN6ANoFkdAkbmLeANG3HV9lChoBmgJaA9DCDRlpx8UAHJAlIaUUpRoFU1NAmgWR0CRvF89Oh0ydX2UKGgGaAloD0MI1m670FwjW0CUhpRSlGgVTegDaBZHQJG89Hd43WF1fZQoaAZoCWgPQwj/ImjMJL9kQJSGlFKUaBVN6ANoFkdAkb7h0+1SfnV9lChoBmgJaA9DCFEwYwrWWA3AlIaUUpRoFU0RAWgWR0CRw3fLs8gZdX2UKGgGaAloD0MI2V92Tx4rckCUhpRSlGgVTZ4CaBZHQJHHN+F10T11fZQoaAZoCWgPQwg8odefxDxdQJSGlFKUaBVN6ANoFkdAkdJfN7jT8nV9lChoBmgJaA9DCCUi/Iuggl1AlIaUUpRoFU3oA2gWR0CR0y7EYO2BdX2UKGgGaAloD0MIjEtV2mIqa0CUhpRSlGgVTXgCaBZHQJHTo/jbSJF1fZQoaAZoCWgPQwiHiJtTyXpeQJSGlFKUaBVN6ANoFkdAkdUZG8VYZHV9lChoBmgJaA9DCGdEaW/wOGRAlIaUUpRoFU3oA2gWR0CR2Wz67/XHdX2UKGgGaAloD0MIOKJ71jXzYECUhpRSlGgVTegDaBZHQJHa9LJ0W/J1fZQoaAZoCWgPQwgiVKnZgz1jQJSGlFKUaBVN6ANoFkdAkj1T2Bas63V9lChoBmgJaA9DCLgBnx9G2W1AlIaUUpRoFU0zAmgWR0CSPiduHerNdX2UKGgGaAloD0MItFVJZB+zbkCUhpRSlGgVTa0BaBZHQJI+3UWl/H51fZQoaAZoCWgPQwj+0TdpGkwrwJSGlFKUaBVL82gWR0CSP+KuB+WodX2UKGgGaAloD0MIT64pkNkuYECUhpRSlGgVTegDaBZHQJJAokSmIj51fZQoaAZoCWgPQwjnFyXoL/5eQJSGlFKUaBVN6ANoFkdAkkHpmqYJFHV9lChoBmgJaA9DCG40gLfAHmxAlIaUUpRoFU3lA2gWR0CSQ1vVmSQpdX2UKGgGaAloD0MIMqt3uB3hbECUhpRSlGgVTQsDaBZHQJJFzV5KODJ1fZQoaAZoCWgPQwjjN4WVCuVvQJSGlFKUaBVNSQNoFkdAkkZjAzpHJHV9lChoBmgJaA9DCOV7RiJ0tXBAlIaUUpRoFU2QAWgWR0CSR/VBUrCndX2UKGgGaAloD0MIT+lg/R9bbkCUhpRSlGgVTTsDaBZHQJJIauq3mV91fZQoaAZoCWgPQwgdBB2tagn8v5SGlFKUaBVL4GgWR0CSSL8274BWdX2UKGgGaAloD0MIkbWGUnv0bkCUhpRSlGgVTeIBaBZHQJJTU1+AmRh1fZQoaAZoCWgPQwj+YrZk1R5xQJSGlFKUaBVNywJoFkdAklsl3t8eCHV9lChoBmgJaA9DCP3a+um/r21AlIaUUpRoFU26AWgWR0CSWyGMGX5WdX2UKGgGaAloD0MIQKN06V9vXkCUhpRSlGgVTegDaBZHQJJcb8k2P1d1fZQoaAZoCWgPQwham8b2mhFyQJSGlFKUaBVNygJoFkdAkmIccIZ62XV9lChoBmgJaA9DCIEjgQabI2xAlIaUUpRoFU1/AmgWR0CSZXajvd/KdX2UKGgGaAloD0MIBpylZDkxOUCUhpRSlGgVTSIBaBZHQJJmu7VawEB1fZQoaAZoCWgPQwhKKH0h5HtuQJSGlFKUaBVNGAJoFkdAkmcYa5wwTXV9lChoBmgJaA9DCAx3Loz0UnBAlIaUUpRoFU2lAmgWR0CSaaqG1x82dX2UKGgGaAloD0MIEeULWki7WUCUhpRSlGgVTegDaBZHQJJqKG9Htnh1fZQoaAZoCWgPQwhzZyYYTnJrQJSGlFKUaBVNvQNoFkdAknH/IKc/dXV9lChoBmgJaA9DCHbhB+dTY25AlIaUUpRoFU35AmgWR0CSck+K0lZ6dX2UKGgGaAloD0MI+dfyyvVHYECUhpRSlGgVTegDaBZHQJJ072i+L3t1fZQoaAZoCWgPQwipFDsaR3hwQJSGlFKUaBVNCAJoFkdAknbhqXWvsHV9lChoBmgJaA9DCMk4RrIHpXBAlIaUUpRoFU2kAWgWR0CSdrKk2xY8dX2UKGgGaAloD0MIBn+/mO2PcECUhpRSlGgVTcABaBZHQJJ7UyxiXpp1fZQoaAZoCWgPQwibHhSUotFjQJSGlFKUaBVN6ANoFkdAknsY1k1/D3V9lChoBmgJaA9DCAngZvHiRmFAlIaUUpRoFU3oA2gWR0CSf+ll9SdfdX2UKGgGaAloD0MIwCFUqdk3XUCUhpRSlGgVTegDaBZHQJKAZlEqlP91fZQoaAZoCWgPQwizmq4nuoZuQJSGlFKUaBVNzwFoFkdAkoCh6F/QSnV9lChoBmgJaA9DCM+HZwmya2JAlIaUUpRoFU3oA2gWR0CSgLk+otL+dX2UKGgGaAloD0MIHhfVIqJoL8CUhpRSlGgVTQEBaBZHQJKBe+cpb2V1fZQoaAZoCWgPQwhzf/W470VuQJSGlFKUaBVNYQFoFkdAkoL1eSjgynV9lChoBmgJaA9DCBoYeVmTVGxAlIaUUpRoFU3bAmgWR0CSiSjFhodudX2UKGgGaAloD0MI9fbnoiEwX0CUhpRSlGgVTegDaBZHQJKMvXRPXTV1fZQoaAZoCWgPQwjJVwIpsVFhQJSGlFKUaBVN6ANoFkdAkoygPNFBp3V9lChoBmgJaA9DCHNKQExCmG5AlIaUUpRoFU3JAWgWR0CSkOPkq+ajdX2UKGgGaAloD0MIZVWEmwy+cECUhpRSlGgVTY8BaBZHQJKTErwvxpd1fZQoaAZoCWgPQwjhRV9BGsVuQJSGlFKUaBVNhwFoFkdAkpOHgUDdQHV9lChoBmgJaA9DCEop6PaSaF5AlIaUUpRoFU3oA2gWR0CSl5+hGpdbdX2UKGgGaAloD0MIJclzfR8ac0CUhpRSlGgVTToBaBZHQJKZqXzDn/11fZQoaAZoCWgPQwjW/WMhOqVbQJSGlFKUaBVN6ANoFkdAkpp3/giu+3V9lChoBmgJaA9DCJPjTungGGxAlIaUUpRoFU1oA2gWR0CSorSamXPadX2UKGgGaAloD0MIYmU08vl7YUCUhpRSlGgVTegDaBZHQJKlAQ2/BWR1fZQoaAZoCWgPQwgYl6q0RTdvQJSGlFKUaBVNtQJoFkdAkqUyKiwjdHV9lChoBmgJaA9DCHdqLjdYpHBAlIaUUpRoFU1nAWgWR0CSpzOU+s5odWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 160,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
landing_PPO/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4989eab898570dd96dd36eb592e3682421508480decc7497895c07703985e2e6
|
3 |
+
size 87865
|
landing_PPO/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80641b4bdc924d50226ceffcc945a562a4d001cfcb6b588cba2be124600ae976
|
3 |
+
size 43201
|
landing_PPO/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
landing_PPO/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.7.15
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (235 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 239.22084665829038, "std_reward": 13.03706659809094, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-22T15:44:13.095804"}
|