SweepCake commited on
Commit
57b89b7
·
1 Parent(s): 7ed0e36

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 239.22 +/- 13.04
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f13db950ef0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f13db950f80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f13db952050>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f13db9520e0>", "_build": "<function ActorCriticPolicy._build at 0x7f13db952170>", "forward": "<function ActorCriticPolicy.forward at 0x7f13db952200>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f13db952290>", "_predict": "<function ActorCriticPolicy._predict at 0x7f13db952320>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f13db9523b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f13db952440>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f13db9524d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f13db998bd0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1669130603605920578, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGb7Az1OzKQ/UNZ2PjSV876SqCg98k2ZPQAAAAAAAAAAgAs0vY+CErpP2pI42lk7M1iW+7r3Oau3AACAPwAAgD960ge+uLKluyL4rzznxn69U743Pa4GDz8AAIA/AACAP7oWQb629368tWtuu/9Sr7lm3OU9NDiNOgAAgD8AAIA/bThBvsXmxzzM1sI8KvqPPMEloL7AJr09AACAPwAAgD8GCxs+7oKDPxLsTD7hDAW/ZSnoPVM7XboAAAAAAAAAAM3NpD0pXCG62ARkPAlsmzY/0AA7AvqaNQAAgD8AAIA/Wm+yPY9GWrpOdQ253kycs/Fl4rlAYSE4AACAPwAAgD/gGQW+Mls1P+1ijj3Dd7O+yTsYPd1QAz4AAAAAAAAAAC35M75Sf+K7Jvheu5boGLlsCUQ9boMAOgAAgD8AAIA/zS8xPUg9krpiahi4iXMJMuSfNrvwZC03AACAPwAAgD/2voI+yPZrP5udiz6da8a+k6R7Pu7TyLwAAAAAAAAAAGDdWL4u3vq8i5p2OTZrFDjmBF8+fvuluAAAgD8AAIA/JgfOPVxTYbqLsAY8gh2mtUrdlzoYRaC0AACAPwAAgD8AsYS9Hw3nuQMDHzgrICSy1yRbu/3vObcAAIA/AACAP26MhL60s6q8GiCFuqCAw7hL4RY+7BihOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIH2XEBaDkXECUhpRSlIwBbJRN6AOMAXSUR0CQ04ejmCAddX2UKGgGaAloD0MIiKBq9GqsXECUhpRSlGgVTegDaBZHQJDUuSeRPoF1fZQoaAZoCWgPQwjKMy+H3acTwJSGlFKUaBVNLgFoFkdAkNanpr1ui3V9lChoBmgJaA9DCDnx1Y7i61RAlIaUUpRoFU3oA2gWR0CQ2nYvnKW+dX2UKGgGaAloD0MIOzdtxmnjXECUhpRSlGgVTegDaBZHQJDcadEsrd51fZQoaAZoCWgPQwg+BitONTdiQJSGlFKUaBVN6ANoFkdAkOBAHqu8snV9lChoBmgJaA9DCHui68IPUGBAlIaUUpRoFU3oA2gWR0CQ5rdQwblzdX2UKGgGaAloD0MI+uyA64pRWECUhpRSlGgVTegDaBZHQJDsDu1F6Rh1fZQoaAZoCWgPQwhXJZF9kA9eQJSGlFKUaBVN6ANoFkdAkPE4ToMa0nV9lChoBmgJaA9DCCy5isVvR2NAlIaUUpRoFU3oA2gWR0CQ8l/kvK2bdX2UKGgGaAloD0MIks8rnvpCZkCUhpRSlGgVTegDaBZHQJDzbWFvhqF1fZQoaAZoCWgPQwg3ww34/AxeQJSGlFKUaBVN6ANoFkdAkV02IwdsBXV9lChoBmgJaA9DCAmM9Q1MQ15AlIaUUpRoFU3oA2gWR0CRXfOSW7e3dX2UKGgGaAloD0MIpPs5Bfl5IUCUhpRSlGgVTTYBaBZHQJFe1lmOEM91fZQoaAZoCWgPQwhlxAWgUX9fQJSGlFKUaBVN6ANoFkdAkV+mFBY3enV9lChoBmgJaA9DCIUn9PqTdW9AlIaUUpRoFU2FAmgWR0CRYb9nbqQjdX2UKGgGaAloD0MIyT1d3TEpYUCUhpRSlGgVTegDaBZHQJFnQJY1YQt1fZQoaAZoCWgPQwizI9V3fkRbQJSGlFKUaBVN6ANoFkdAkWpR5ooNNXV9lChoBmgJaA9DCEF+NnKdA3BAlIaUUpRoFU1WA2gWR0CRalULlV94dX2UKGgGaAloD0MI845TdKS9b0CUhpRSlGgVTckBaBZHQJFrrHktEoh1fZQoaAZoCWgPQwi+g584gK4mQJSGlFKUaBVNLQFoFkdAkXFzXSSeRXV9lChoBmgJaA9DCFor2hznq2JAlIaUUpRoFU3oA2gWR0CRdt0zj3mFdX2UKGgGaAloD0MIw0maP6Z9JkCUhpRSlGgVS85oFkdAkXp8Xm/34HV9lChoBmgJaA9DCD3yBwNPwWBAlIaUUpRoFU3oA2gWR0CRf752Qnx8dX2UKGgGaAloD0MInWaBdodKWECUhpRSlGgVTegDaBZHQJGB4G6f8Mx1fZQoaAZoCWgPQwgDCvX0kUlgQJSGlFKUaBVN6ANoFkdAkYY9qQA+6nV9lChoBmgJaA9DCMR5OIHpAW9AlIaUUpRoFU1OA2gWR0CRl8I7eVLSdX2UKGgGaAloD0MIB0Dc1atGbECUhpRSlGgVTdQBaBZHQJGZd/qgRK91fZQoaAZoCWgPQwggKLftew9jQJSGlFKUaBVN6ANoFkdAkZp3qNZNf3V9lChoBmgJaA9DCFqdnKG4xWJAlIaUUpRoFU3oA2gWR0CRm7D4QBgedX2UKGgGaAloD0MIyLPLt74wYECUhpRSlGgVTegDaBZHQJGc0kOZssR1fZQoaAZoCWgPQwhens4VJRxsQJSGlFKUaBVN+gJoFkdAkaGdS/CZW3V9lChoBmgJaA9DCPA2b5wUBWNAlIaUUpRoFU3oA2gWR0CRompwS8J2dX2UKGgGaAloD0MIl+MViJ5DX0CUhpRSlGgVTegDaBZHQJGjLvDxb0R1fZQoaAZoCWgPQwjkZU0s8KJXQJSGlFKUaBVN6ANoFkdAkaXfO+qR2nV9lChoBmgJaA9DCPFkNzP6HmtAlIaUUpRoFU0oAmgWR0CRqcWYnfEXdX2UKGgGaAloD0MIQKAzaVNMXECUhpRSlGgVTegDaBZHQJGrP8GcFyJ1fZQoaAZoCWgPQwgUzQNY5FFuQJSGlFKUaBVNdwFoFkdAka1SFoL5RHV9lChoBmgJaA9DCLbZWIl501tAlIaUUpRoFU3oA2gWR0CRr2u14Pf9dX2UKGgGaAloD0MIs3qH26F9XkCUhpRSlGgVTegDaBZHQJGz83T/hl11fZQoaAZoCWgPQwiAD167NBBjQJSGlFKUaBVN6ANoFkdAkbmLeANG3HV9lChoBmgJaA9DCDRlpx8UAHJAlIaUUpRoFU1NAmgWR0CRvF89Oh0ydX2UKGgGaAloD0MI1m670FwjW0CUhpRSlGgVTegDaBZHQJG89Hd43WF1fZQoaAZoCWgPQwj/ImjMJL9kQJSGlFKUaBVN6ANoFkdAkb7h0+1SfnV9lChoBmgJaA9DCFEwYwrWWA3AlIaUUpRoFU0RAWgWR0CRw3fLs8gZdX2UKGgGaAloD0MI2V92Tx4rckCUhpRSlGgVTZ4CaBZHQJHHN+F10T11fZQoaAZoCWgPQwg8odefxDxdQJSGlFKUaBVN6ANoFkdAkdJfN7jT8nV9lChoBmgJaA9DCCUi/Iuggl1AlIaUUpRoFU3oA2gWR0CR0y7EYO2BdX2UKGgGaAloD0MIjEtV2mIqa0CUhpRSlGgVTXgCaBZHQJHTo/jbSJF1fZQoaAZoCWgPQwiHiJtTyXpeQJSGlFKUaBVN6ANoFkdAkdUZG8VYZHV9lChoBmgJaA9DCGdEaW/wOGRAlIaUUpRoFU3oA2gWR0CR2Wz67/XHdX2UKGgGaAloD0MIOKJ71jXzYECUhpRSlGgVTegDaBZHQJHa9LJ0W/J1fZQoaAZoCWgPQwgiVKnZgz1jQJSGlFKUaBVN6ANoFkdAkj1T2Bas63V9lChoBmgJaA9DCLgBnx9G2W1AlIaUUpRoFU0zAmgWR0CSPiduHerNdX2UKGgGaAloD0MItFVJZB+zbkCUhpRSlGgVTa0BaBZHQJI+3UWl/H51fZQoaAZoCWgPQwj+0TdpGkwrwJSGlFKUaBVL82gWR0CSP+KuB+WodX2UKGgGaAloD0MIT64pkNkuYECUhpRSlGgVTegDaBZHQJJAokSmIj51fZQoaAZoCWgPQwjnFyXoL/5eQJSGlFKUaBVN6ANoFkdAkkHpmqYJFHV9lChoBmgJaA9DCG40gLfAHmxAlIaUUpRoFU3lA2gWR0CSQ1vVmSQpdX2UKGgGaAloD0MIMqt3uB3hbECUhpRSlGgVTQsDaBZHQJJFzV5KODJ1fZQoaAZoCWgPQwjjN4WVCuVvQJSGlFKUaBVNSQNoFkdAkkZjAzpHJHV9lChoBmgJaA9DCOV7RiJ0tXBAlIaUUpRoFU2QAWgWR0CSR/VBUrCndX2UKGgGaAloD0MIT+lg/R9bbkCUhpRSlGgVTTsDaBZHQJJIauq3mV91fZQoaAZoCWgPQwgdBB2tagn8v5SGlFKUaBVL4GgWR0CSSL8274BWdX2UKGgGaAloD0MIkbWGUnv0bkCUhpRSlGgVTeIBaBZHQJJTU1+AmRh1fZQoaAZoCWgPQwj+YrZk1R5xQJSGlFKUaBVNywJoFkdAklsl3t8eCHV9lChoBmgJaA9DCP3a+um/r21AlIaUUpRoFU26AWgWR0CSWyGMGX5WdX2UKGgGaAloD0MIQKN06V9vXkCUhpRSlGgVTegDaBZHQJJcb8k2P1d1fZQoaAZoCWgPQwham8b2mhFyQJSGlFKUaBVNygJoFkdAkmIccIZ62XV9lChoBmgJaA9DCIEjgQabI2xAlIaUUpRoFU1/AmgWR0CSZXajvd/KdX2UKGgGaAloD0MIBpylZDkxOUCUhpRSlGgVTSIBaBZHQJJmu7VawEB1fZQoaAZoCWgPQwhKKH0h5HtuQJSGlFKUaBVNGAJoFkdAkmcYa5wwTXV9lChoBmgJaA9DCAx3Loz0UnBAlIaUUpRoFU2lAmgWR0CSaaqG1x82dX2UKGgGaAloD0MIEeULWki7WUCUhpRSlGgVTegDaBZHQJJqKG9Htnh1fZQoaAZoCWgPQwhzZyYYTnJrQJSGlFKUaBVNvQNoFkdAknH/IKc/dXV9lChoBmgJaA9DCHbhB+dTY25AlIaUUpRoFU35AmgWR0CSck+K0lZ6dX2UKGgGaAloD0MI+dfyyvVHYECUhpRSlGgVTegDaBZHQJJ072i+L3t1fZQoaAZoCWgPQwipFDsaR3hwQJSGlFKUaBVNCAJoFkdAknbhqXWvsHV9lChoBmgJaA9DCMk4RrIHpXBAlIaUUpRoFU2kAWgWR0CSdrKk2xY8dX2UKGgGaAloD0MIBn+/mO2PcECUhpRSlGgVTcABaBZHQJJ7UyxiXpp1fZQoaAZoCWgPQwibHhSUotFjQJSGlFKUaBVN6ANoFkdAknsY1k1/D3V9lChoBmgJaA9DCAngZvHiRmFAlIaUUpRoFU3oA2gWR0CSf+ll9SdfdX2UKGgGaAloD0MIwCFUqdk3XUCUhpRSlGgVTegDaBZHQJKAZlEqlP91fZQoaAZoCWgPQwizmq4nuoZuQJSGlFKUaBVNzwFoFkdAkoCh6F/QSnV9lChoBmgJaA9DCM+HZwmya2JAlIaUUpRoFU3oA2gWR0CSgLk+otL+dX2UKGgGaAloD0MIHhfVIqJoL8CUhpRSlGgVTQEBaBZHQJKBe+cpb2V1fZQoaAZoCWgPQwhzf/W470VuQJSGlFKUaBVNYQFoFkdAkoL1eSjgynV9lChoBmgJaA9DCBoYeVmTVGxAlIaUUpRoFU3bAmgWR0CSiSjFhodudX2UKGgGaAloD0MI9fbnoiEwX0CUhpRSlGgVTegDaBZHQJKMvXRPXTV1fZQoaAZoCWgPQwjJVwIpsVFhQJSGlFKUaBVN6ANoFkdAkoygPNFBp3V9lChoBmgJaA9DCHNKQExCmG5AlIaUUpRoFU3JAWgWR0CSkOPkq+ajdX2UKGgGaAloD0MIZVWEmwy+cECUhpRSlGgVTY8BaBZHQJKTErwvxpd1fZQoaAZoCWgPQwjhRV9BGsVuQJSGlFKUaBVNhwFoFkdAkpOHgUDdQHV9lChoBmgJaA9DCEop6PaSaF5AlIaUUpRoFU3oA2gWR0CSl5+hGpdbdX2UKGgGaAloD0MIJclzfR8ac0CUhpRSlGgVTToBaBZHQJKZqXzDn/11fZQoaAZoCWgPQwjW/WMhOqVbQJSGlFKUaBVN6ANoFkdAkpp3/giu+3V9lChoBmgJaA9DCJPjTungGGxAlIaUUpRoFU1oA2gWR0CSorSamXPadX2UKGgGaAloD0MIYmU08vl7YUCUhpRSlGgVTegDaBZHQJKlAQ2/BWR1fZQoaAZoCWgPQwgYl6q0RTdvQJSGlFKUaBVNtQJoFkdAkqUyKiwjdHV9lChoBmgJaA9DCHdqLjdYpHBAlIaUUpRoFU1nAWgWR0CSpzOU+s5odWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
landing_PPO.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e55f116718c6f0c11cf4fa8fd61e1879233665c810607dd2e6bb2d2f518546d4
3
+ size 147148
landing_PPO/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
landing_PPO/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f13db950ef0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f13db950f80>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f13db952050>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f13db9520e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f13db952170>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f13db952200>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f13db952290>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f13db952320>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f13db9523b0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f13db952440>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f13db9524d0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f13db998bd0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 524288,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1669130603605920578,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGb7Az1OzKQ/UNZ2PjSV876SqCg98k2ZPQAAAAAAAAAAgAs0vY+CErpP2pI42lk7M1iW+7r3Oau3AACAPwAAgD960ge+uLKluyL4rzznxn69U743Pa4GDz8AAIA/AACAP7oWQb629368tWtuu/9Sr7lm3OU9NDiNOgAAgD8AAIA/bThBvsXmxzzM1sI8KvqPPMEloL7AJr09AACAPwAAgD8GCxs+7oKDPxLsTD7hDAW/ZSnoPVM7XboAAAAAAAAAAM3NpD0pXCG62ARkPAlsmzY/0AA7AvqaNQAAgD8AAIA/Wm+yPY9GWrpOdQ253kycs/Fl4rlAYSE4AACAPwAAgD/gGQW+Mls1P+1ijj3Dd7O+yTsYPd1QAz4AAAAAAAAAAC35M75Sf+K7Jvheu5boGLlsCUQ9boMAOgAAgD8AAIA/zS8xPUg9krpiahi4iXMJMuSfNrvwZC03AACAPwAAgD/2voI+yPZrP5udiz6da8a+k6R7Pu7TyLwAAAAAAAAAAGDdWL4u3vq8i5p2OTZrFDjmBF8+fvuluAAAgD8AAIA/JgfOPVxTYbqLsAY8gh2mtUrdlzoYRaC0AACAPwAAgD8AsYS9Hw3nuQMDHzgrICSy1yRbu/3vObcAAIA/AACAP26MhL60s6q8GiCFuqCAw7hL4RY+7BihOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.04857599999999995,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIH2XEBaDkXECUhpRSlIwBbJRN6AOMAXSUR0CQ04ejmCAddX2UKGgGaAloD0MIiKBq9GqsXECUhpRSlGgVTegDaBZHQJDUuSeRPoF1fZQoaAZoCWgPQwjKMy+H3acTwJSGlFKUaBVNLgFoFkdAkNanpr1ui3V9lChoBmgJaA9DCDnx1Y7i61RAlIaUUpRoFU3oA2gWR0CQ2nYvnKW+dX2UKGgGaAloD0MIOzdtxmnjXECUhpRSlGgVTegDaBZHQJDcadEsrd51fZQoaAZoCWgPQwg+BitONTdiQJSGlFKUaBVN6ANoFkdAkOBAHqu8snV9lChoBmgJaA9DCHui68IPUGBAlIaUUpRoFU3oA2gWR0CQ5rdQwblzdX2UKGgGaAloD0MI+uyA64pRWECUhpRSlGgVTegDaBZHQJDsDu1F6Rh1fZQoaAZoCWgPQwhXJZF9kA9eQJSGlFKUaBVN6ANoFkdAkPE4ToMa0nV9lChoBmgJaA9DCCy5isVvR2NAlIaUUpRoFU3oA2gWR0CQ8l/kvK2bdX2UKGgGaAloD0MIks8rnvpCZkCUhpRSlGgVTegDaBZHQJDzbWFvhqF1fZQoaAZoCWgPQwg3ww34/AxeQJSGlFKUaBVN6ANoFkdAkV02IwdsBXV9lChoBmgJaA9DCAmM9Q1MQ15AlIaUUpRoFU3oA2gWR0CRXfOSW7e3dX2UKGgGaAloD0MIpPs5Bfl5IUCUhpRSlGgVTTYBaBZHQJFe1lmOEM91fZQoaAZoCWgPQwhlxAWgUX9fQJSGlFKUaBVN6ANoFkdAkV+mFBY3enV9lChoBmgJaA9DCIUn9PqTdW9AlIaUUpRoFU2FAmgWR0CRYb9nbqQjdX2UKGgGaAloD0MIyT1d3TEpYUCUhpRSlGgVTegDaBZHQJFnQJY1YQt1fZQoaAZoCWgPQwizI9V3fkRbQJSGlFKUaBVN6ANoFkdAkWpR5ooNNXV9lChoBmgJaA9DCEF+NnKdA3BAlIaUUpRoFU1WA2gWR0CRalULlV94dX2UKGgGaAloD0MI845TdKS9b0CUhpRSlGgVTckBaBZHQJFrrHktEoh1fZQoaAZoCWgPQwi+g584gK4mQJSGlFKUaBVNLQFoFkdAkXFzXSSeRXV9lChoBmgJaA9DCFor2hznq2JAlIaUUpRoFU3oA2gWR0CRdt0zj3mFdX2UKGgGaAloD0MIw0maP6Z9JkCUhpRSlGgVS85oFkdAkXp8Xm/34HV9lChoBmgJaA9DCD3yBwNPwWBAlIaUUpRoFU3oA2gWR0CRf752Qnx8dX2UKGgGaAloD0MInWaBdodKWECUhpRSlGgVTegDaBZHQJGB4G6f8Mx1fZQoaAZoCWgPQwgDCvX0kUlgQJSGlFKUaBVN6ANoFkdAkYY9qQA+6nV9lChoBmgJaA9DCMR5OIHpAW9AlIaUUpRoFU1OA2gWR0CRl8I7eVLSdX2UKGgGaAloD0MIB0Dc1atGbECUhpRSlGgVTdQBaBZHQJGZd/qgRK91fZQoaAZoCWgPQwggKLftew9jQJSGlFKUaBVN6ANoFkdAkZp3qNZNf3V9lChoBmgJaA9DCFqdnKG4xWJAlIaUUpRoFU3oA2gWR0CRm7D4QBgedX2UKGgGaAloD0MIyLPLt74wYECUhpRSlGgVTegDaBZHQJGc0kOZssR1fZQoaAZoCWgPQwhens4VJRxsQJSGlFKUaBVN+gJoFkdAkaGdS/CZW3V9lChoBmgJaA9DCPA2b5wUBWNAlIaUUpRoFU3oA2gWR0CRompwS8J2dX2UKGgGaAloD0MIl+MViJ5DX0CUhpRSlGgVTegDaBZHQJGjLvDxb0R1fZQoaAZoCWgPQwjkZU0s8KJXQJSGlFKUaBVN6ANoFkdAkaXfO+qR2nV9lChoBmgJaA9DCPFkNzP6HmtAlIaUUpRoFU0oAmgWR0CRqcWYnfEXdX2UKGgGaAloD0MIQKAzaVNMXECUhpRSlGgVTegDaBZHQJGrP8GcFyJ1fZQoaAZoCWgPQwgUzQNY5FFuQJSGlFKUaBVNdwFoFkdAka1SFoL5RHV9lChoBmgJaA9DCLbZWIl501tAlIaUUpRoFU3oA2gWR0CRr2u14Pf9dX2UKGgGaAloD0MIs3qH26F9XkCUhpRSlGgVTegDaBZHQJGz83T/hl11fZQoaAZoCWgPQwiAD167NBBjQJSGlFKUaBVN6ANoFkdAkbmLeANG3HV9lChoBmgJaA9DCDRlpx8UAHJAlIaUUpRoFU1NAmgWR0CRvF89Oh0ydX2UKGgGaAloD0MI1m670FwjW0CUhpRSlGgVTegDaBZHQJG89Hd43WF1fZQoaAZoCWgPQwj/ImjMJL9kQJSGlFKUaBVN6ANoFkdAkb7h0+1SfnV9lChoBmgJaA9DCFEwYwrWWA3AlIaUUpRoFU0RAWgWR0CRw3fLs8gZdX2UKGgGaAloD0MI2V92Tx4rckCUhpRSlGgVTZ4CaBZHQJHHN+F10T11fZQoaAZoCWgPQwg8odefxDxdQJSGlFKUaBVN6ANoFkdAkdJfN7jT8nV9lChoBmgJaA9DCCUi/Iuggl1AlIaUUpRoFU3oA2gWR0CR0y7EYO2BdX2UKGgGaAloD0MIjEtV2mIqa0CUhpRSlGgVTXgCaBZHQJHTo/jbSJF1fZQoaAZoCWgPQwiHiJtTyXpeQJSGlFKUaBVN6ANoFkdAkdUZG8VYZHV9lChoBmgJaA9DCGdEaW/wOGRAlIaUUpRoFU3oA2gWR0CR2Wz67/XHdX2UKGgGaAloD0MIOKJ71jXzYECUhpRSlGgVTegDaBZHQJHa9LJ0W/J1fZQoaAZoCWgPQwgiVKnZgz1jQJSGlFKUaBVN6ANoFkdAkj1T2Bas63V9lChoBmgJaA9DCLgBnx9G2W1AlIaUUpRoFU0zAmgWR0CSPiduHerNdX2UKGgGaAloD0MItFVJZB+zbkCUhpRSlGgVTa0BaBZHQJI+3UWl/H51fZQoaAZoCWgPQwj+0TdpGkwrwJSGlFKUaBVL82gWR0CSP+KuB+WodX2UKGgGaAloD0MIT64pkNkuYECUhpRSlGgVTegDaBZHQJJAokSmIj51fZQoaAZoCWgPQwjnFyXoL/5eQJSGlFKUaBVN6ANoFkdAkkHpmqYJFHV9lChoBmgJaA9DCG40gLfAHmxAlIaUUpRoFU3lA2gWR0CSQ1vVmSQpdX2UKGgGaAloD0MIMqt3uB3hbECUhpRSlGgVTQsDaBZHQJJFzV5KODJ1fZQoaAZoCWgPQwjjN4WVCuVvQJSGlFKUaBVNSQNoFkdAkkZjAzpHJHV9lChoBmgJaA9DCOV7RiJ0tXBAlIaUUpRoFU2QAWgWR0CSR/VBUrCndX2UKGgGaAloD0MIT+lg/R9bbkCUhpRSlGgVTTsDaBZHQJJIauq3mV91fZQoaAZoCWgPQwgdBB2tagn8v5SGlFKUaBVL4GgWR0CSSL8274BWdX2UKGgGaAloD0MIkbWGUnv0bkCUhpRSlGgVTeIBaBZHQJJTU1+AmRh1fZQoaAZoCWgPQwj+YrZk1R5xQJSGlFKUaBVNywJoFkdAklsl3t8eCHV9lChoBmgJaA9DCP3a+um/r21AlIaUUpRoFU26AWgWR0CSWyGMGX5WdX2UKGgGaAloD0MIQKN06V9vXkCUhpRSlGgVTegDaBZHQJJcb8k2P1d1fZQoaAZoCWgPQwham8b2mhFyQJSGlFKUaBVNygJoFkdAkmIccIZ62XV9lChoBmgJaA9DCIEjgQabI2xAlIaUUpRoFU1/AmgWR0CSZXajvd/KdX2UKGgGaAloD0MIBpylZDkxOUCUhpRSlGgVTSIBaBZHQJJmu7VawEB1fZQoaAZoCWgPQwhKKH0h5HtuQJSGlFKUaBVNGAJoFkdAkmcYa5wwTXV9lChoBmgJaA9DCAx3Loz0UnBAlIaUUpRoFU2lAmgWR0CSaaqG1x82dX2UKGgGaAloD0MIEeULWki7WUCUhpRSlGgVTegDaBZHQJJqKG9Htnh1fZQoaAZoCWgPQwhzZyYYTnJrQJSGlFKUaBVNvQNoFkdAknH/IKc/dXV9lChoBmgJaA9DCHbhB+dTY25AlIaUUpRoFU35AmgWR0CSck+K0lZ6dX2UKGgGaAloD0MI+dfyyvVHYECUhpRSlGgVTegDaBZHQJJ072i+L3t1fZQoaAZoCWgPQwipFDsaR3hwQJSGlFKUaBVNCAJoFkdAknbhqXWvsHV9lChoBmgJaA9DCMk4RrIHpXBAlIaUUpRoFU2kAWgWR0CSdrKk2xY8dX2UKGgGaAloD0MIBn+/mO2PcECUhpRSlGgVTcABaBZHQJJ7UyxiXpp1fZQoaAZoCWgPQwibHhSUotFjQJSGlFKUaBVN6ANoFkdAknsY1k1/D3V9lChoBmgJaA9DCAngZvHiRmFAlIaUUpRoFU3oA2gWR0CSf+ll9SdfdX2UKGgGaAloD0MIwCFUqdk3XUCUhpRSlGgVTegDaBZHQJKAZlEqlP91fZQoaAZoCWgPQwizmq4nuoZuQJSGlFKUaBVNzwFoFkdAkoCh6F/QSnV9lChoBmgJaA9DCM+HZwmya2JAlIaUUpRoFU3oA2gWR0CSgLk+otL+dX2UKGgGaAloD0MIHhfVIqJoL8CUhpRSlGgVTQEBaBZHQJKBe+cpb2V1fZQoaAZoCWgPQwhzf/W470VuQJSGlFKUaBVNYQFoFkdAkoL1eSjgynV9lChoBmgJaA9DCBoYeVmTVGxAlIaUUpRoFU3bAmgWR0CSiSjFhodudX2UKGgGaAloD0MI9fbnoiEwX0CUhpRSlGgVTegDaBZHQJKMvXRPXTV1fZQoaAZoCWgPQwjJVwIpsVFhQJSGlFKUaBVN6ANoFkdAkoygPNFBp3V9lChoBmgJaA9DCHNKQExCmG5AlIaUUpRoFU3JAWgWR0CSkOPkq+ajdX2UKGgGaAloD0MIZVWEmwy+cECUhpRSlGgVTY8BaBZHQJKTErwvxpd1fZQoaAZoCWgPQwjhRV9BGsVuQJSGlFKUaBVNhwFoFkdAkpOHgUDdQHV9lChoBmgJaA9DCEop6PaSaF5AlIaUUpRoFU3oA2gWR0CSl5+hGpdbdX2UKGgGaAloD0MIJclzfR8ac0CUhpRSlGgVTToBaBZHQJKZqXzDn/11fZQoaAZoCWgPQwjW/WMhOqVbQJSGlFKUaBVN6ANoFkdAkpp3/giu+3V9lChoBmgJaA9DCJPjTungGGxAlIaUUpRoFU1oA2gWR0CSorSamXPadX2UKGgGaAloD0MIYmU08vl7YUCUhpRSlGgVTegDaBZHQJKlAQ2/BWR1fZQoaAZoCWgPQwgYl6q0RTdvQJSGlFKUaBVNtQJoFkdAkqUyKiwjdHV9lChoBmgJaA9DCHdqLjdYpHBAlIaUUpRoFU1nAWgWR0CSpzOU+s5odWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 160,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
landing_PPO/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4989eab898570dd96dd36eb592e3682421508480decc7497895c07703985e2e6
3
+ size 87865
landing_PPO/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80641b4bdc924d50226ceffcc945a562a4d001cfcb6b588cba2be124600ae976
3
+ size 43201
landing_PPO/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
landing_PPO/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.7.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (235 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 239.22084665829038, "std_reward": 13.03706659809094, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-22T15:44:13.095804"}