--- license: apache-2.0 language: - en library_name: transformers --- # Compressed Meta Llama-3-8B-Instruct with Palu ## Overview This repository contains a compressed version of the Meta Llama-3-8B-Instruct model, utilizing the Palu framework for KV-Cache compression. Palu reduces the hidden dimensions of the KV-Cache through low-rank decomposition, significantly reducing the model's memory footprint while maintaining or enhancing performance. ## Key Features - **Model**: Meta Llama-3-8B-Instruct - **Compression Framework**: Palu - **Compression Rate**: Up to 91.25% memory reduction - **Accuracy**: Maintained or improved perplexity compared to the base model ## Installation ### Clone the Repository Ensure you have Git and Conda installed on your system. ```bash git clone --recurse-submodules https://github.com/shadowpa0327/Palu.git cd Palu ``` ### Set Up the Environment Create and activate a Conda environment. ```bash conda create -n Palu python=3.10 conda activate Palu pip install -r requirements.txt ``` ### Install Third-Party Libraries ```bash pip install -e 3rdparty/lm-evaluation-harness pip install -e 3rdparty/fast-hadamard-transform ``` ## Usage ### Compress the Model To compress Meta Llama-3-8B-Instruct using Palu's low-rank decomposition, use the following command: ```bash python compress.py \ --model_id="meta-llama/Llama-3-8b-instruct" \ --calib_dataset wikitext2 \ --param_ratio_target 0.7 \ --search_method fisher_uniform \ --head_group_size 4 \ --dump_huggingface_model \ --use_cache ``` The compressed model will be saved in the `Meta-Llama-3-8b-instruct_ratio-0.7_gs-4-fisher_uniform` directory in Hugging Face format. ### Evaluate the Compressed Model #### Perplexity To evaluate the perplexity on the `wikitext2` dataset with sequence length 2048, run: ```bash python run_ppl_eval.py \ --model_name_or_path /Path/To/Palu/Model \ --datasets wikitext2 \ --seqlen 2048 ``` To evaluate with 3-bit low-rank aware quantization, use: ```bash python run_ppl_eval.py \ --model_name_or_path /Path/To/Palu/Model \ --datasets wikitext2 \ --seqlen 4096 \ --lt_bits 3 \ --lt_hadamard ``` #### Zero-shot Evaluation For zero-shot evaluations, use the following command: ```bash CUDA_VISIBLE_DEVICES=0 python run_lm_eval.py \ --model_name_or_path "/Path/To/Palu/Model" \ --tasks "openbookqa,hellaswag,piqa,arc_easy,arc_challenge,winogrande" ``` #### Long-Bench Evaluation Evaluate the compressed model on long-bench tasks: ```bash CUDA_VISIBLE_DEVICES=0 python run_long_bench.py \ --model_name_or_path /Path/To/Palu/Model ``` ## Latency Evaluation ### Attention Module Evaluate the latency of the Palu-compressed attention module: ```bash CUDA_VISIBLE_DEVICES=0 python run_latency_attention.py \ --rank_k 1024 --rank_v 3072 --group_size 4 \ --prompt_len 65536 --palu ``` ### Reconstruction Kernel Evaluate the latency of the reconstruction kernel: ```bash CUDA_VISIBLE_DEVICES=0 python run_latency_kernel.py \ --total_rank 1024 --group_size 4 ``` ## Conclusion This compressed version of Meta Llama-3-8B-Instruct, powered by Palu, is optimized for memory efficiency without compromising performance. Whether you're working with large datasets or deploying models in memory-constrained environments, this setup is designed to provide robust results.