--- license: apache-2.0 language: - en library_name: transformers --- # Compressed Meta Llama-3-8B-Instruct with Palu ## Overview This repository contains a compressed version of the Meta Llama-3-8B-Instruct model, utilizing the Palu framework for KV-Cache compression. Palu reduces the hidden dimensions of the KV-Cache through low-rank decomposition, significantly reducing the model's memory footprint while maintaining or enhancing performance. ## Evaluation Results Here's a Markdown file to include the results of your comparisons: --- # Meta Llama-3-8B-Instruct: Palu Compression Results ## Perplexity (PPL) | Model | PPL | |----------------------------------------|-----------------| | **meta-llama-3-8b-instruct-palu** | **8.8309** | | **meta-llama-3-8b-instruct (Base)** | **8.2845** | ## Zero-shot Evaluation ### meta-llama-3-8b-instruct-palu | Tasks | Version | Filter | n-shot | Metric | Value | Stderr | |-----------------|---------|--------|--------|---------|--------|---------| | winogrande | 1 | none | 0 | acc | 0.7277 | ±0.0125 | | arc_challenge | 1 | none | 0 | acc | 0.4949 | ±0.0146 | | | | | 0 | acc_norm| 0.5427 | ±0.0146 | | arc_easy | 1 | none | 0 | acc | 0.7942 | ±0.0083 | | | | | 0 | acc_norm| 0.7551 | ±0.0088 | | piqa | 1 | none | 0 | acc | 0.7655 | ±0.0099 | | | | | 0 | acc_norm| 0.7644 | ±0.0099 | | hellaswag | 1 | none | 0 | acc | 0.5664 | ±0.0049 | | | | | 0 | acc_norm| 0.7511 | ±0.0043 | | openbookqa | 1 | none | 0 | acc | 0.3360 | ±0.0211 | | | | | 0 | acc_norm| 0.4380 | ±0.0222 | ### meta-llama-3-8b-instruct (Base) | Tasks | Version | Filter | n-shot | Metric | Value | Stderr | |-----------------|---------|--------|--------|---------|--------|---------| | winogrande | 1 | none | 0 | acc | 0.7206 | ±0.0126 | | arc_challenge | 1 | none | 0 | acc | 0.5299 | ±0.0146 | | | | | 0 | acc_norm| 0.5683 | ±0.0145 | | arc_easy | 1 | none | 0 | acc | 0.8161 | ±0.0079 | | | | | 0 | acc_norm| 0.7976 | ±0.0082 | | piqa | 1 | none | 0 | acc | 0.7867 | ±0.0096 | | | | | 0 | acc_norm| 0.7856 | ±0.0096 | | hellaswag | 1 | none | 0 | acc | 0.5769 | ±0.0049 | | | | | 0 | acc_norm| 0.7581 | ±0.0043 | | openbookqa | 1 | none | 0 | acc | 0.3420 | ±0.0212 | | | | | 0 | acc_norm| 0.4320 | ±0.0222 | ## Long-Bench Evaluation ### triviaqa | Model | Score | |----------------------------------------|--------| | **meta-llama-3-8b-instruct-palu** | 89.45 | | **meta-llama-3-8b-instruct (Base)** | 90.56 | ### qasper | Model | Score | |----------------------------------------|--------| | **meta-llama-3-8b-instruct-palu** | 34.92 | | **meta-llama-3-8b-instruct (Base)** | 31.74 | --- This Markdown file should effectively summarize and present the results of your model comparison. ## Key Features - **Model**: Meta Llama-3-8B-Instruct - **Compression Framework**: Palu - **Compression Rate**: Up to 91.25% memory reduction - **Accuracy**: Maintained or improved perplexity compared to the base model ## Installation ### Clone the Repository Ensure you have Git and Conda installed on your system. ```bash git clone --recurse-submodules https://github.com/shadowpa0327/Palu.git cd Palu ``` ### Set Up the Environment Create and activate a Conda environment. ```bash conda create -n Palu python=3.10 conda activate Palu pip install -r requirements.txt ``` ### Install Third-Party Libraries ```bash pip install -e 3rdparty/lm-evaluation-harness pip install -e 3rdparty/fast-hadamard-transform ``` ## Usage ### Compress the Model To compress Meta Llama-3-8B-Instruct using Palu's low-rank decomposition, use the following command: ```bash python compress.py \ --model_id="meta-llama/Llama-3-8b-instruct" \ --calib_dataset wikitext2 \ --param_ratio_target 0.7 \ --search_method fisher_uniform \ --head_group_size 4 \ --dump_huggingface_model \ --use_cache ``` The compressed model will be saved in the `Meta-Llama-3-8b-instruct_ratio-0.7_gs-4-fisher_uniform` directory in Hugging Face format. ### Evaluate the Compressed Model #### Perplexity To evaluate the perplexity on the `wikitext2` dataset with sequence length 2048, run: ```bash python run_ppl_eval.py \ --model_name_or_path /Path/To/Palu/Model \ --datasets wikitext2 \ --seqlen 2048 ``` To evaluate with 3-bit low-rank aware quantization, use: ```bash python run_ppl_eval.py \ --model_name_or_path /Path/To/Palu/Model \ --datasets wikitext2 \ --seqlen 4096 \ --lt_bits 3 \ --lt_hadamard ``` #### Zero-shot Evaluation For zero-shot evaluations, use the following command: ```bash CUDA_VISIBLE_DEVICES=0 python run_lm_eval.py \ --model_name_or_path "/Path/To/Palu/Model" \ --tasks "openbookqa,hellaswag,piqa,arc_easy,arc_challenge,winogrande" ``` #### Long-Bench Evaluation Evaluate the compressed model on long-bench tasks: ```bash CUDA_VISIBLE_DEVICES=0 python run_long_bench.py \ --model_name_or_path /Path/To/Palu/Model ``` ## Latency Evaluation ### Attention Module Evaluate the latency of the Palu-compressed attention module: ```bash CUDA_VISIBLE_DEVICES=0 python run_latency_attention.py \ --rank_k 1024 --rank_v 3072 --group_size 4 \ --prompt_len 65536 --palu ``` ### Reconstruction Kernel Evaluate the latency of the reconstruction kernel: ```bash CUDA_VISIBLE_DEVICES=0 python run_latency_kernel.py \ --total_rank 1024 --group_size 4 ``` ## Conclusion This compressed version of Meta Llama-3-8B-Instruct, powered by Palu, is optimized for memory efficiency without compromising performance. Whether you're working with large datasets or deploying models in memory-constrained environments, this setup is designed to provide robust results.