|
import torch
|
|
from typing import Dict, List, Any
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
|
|
|
|
device = 0 if torch.cuda.is_available() else -1
|
|
|
|
|
|
class EndpointHandler:
|
|
def __init__(self, path=""):
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(path)
|
|
model = AutoModelForCausalLM.from_pretrained(path, low_cpu_mem_usage=True)
|
|
|
|
self.pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, device=device)
|
|
|
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
|
inputs = data.pop("inputs", data)
|
|
parameters = data.pop("parameters", None)
|
|
|
|
|
|
if parameters is not None:
|
|
prediction = self.pipeline(inputs, **parameters)
|
|
else:
|
|
prediction = self.pipeline(inputs)
|
|
|
|
return prediction |