Upload handler.py
Browse files- handler.py +28 -0
handler.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
|
4 |
+
# Load model and tokenizer
|
5 |
+
model_name = "Syko/SykoNaught-v1"
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
8 |
+
|
9 |
+
def handle(inputs):
|
10 |
+
"""
|
11 |
+
Handle incoming inference requests.
|
12 |
+
"""
|
13 |
+
input_text = inputs.get("inputs", "")
|
14 |
+
max_new_tokens = inputs.get("parameters", {}).get("max_new_tokens", 50)
|
15 |
+
temperature = inputs.get("parameters", {}).get("temperature", 0.7)
|
16 |
+
|
17 |
+
# Tokenize input
|
18 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
|
19 |
+
|
20 |
+
# Generate output
|
21 |
+
output = model.generate(
|
22 |
+
input_ids,
|
23 |
+
max_new_tokens=max_new_tokens,
|
24 |
+
temperature=temperature,
|
25 |
+
)
|
26 |
+
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
27 |
+
|
28 |
+
return {"generated_text": output_text}
|