lhallee commited on
Commit
26d043e
·
verified ·
1 Parent(s): 68614df

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +25 -0
README.md CHANGED
@@ -69,6 +69,31 @@ _ = model.embed_dataset(
69
  )
70
  ```
71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
  ## Returning attention maps
73
  Usually F.scaled_dot_product_attention is used for the attention calculations, which is much faster than native PyTorch. However, it cannot return attention maps.
74
  ESM++ has the option to ```output_attentions```, which will calculate attention manually. This is much slower, so do not use unless you need the attention maps.
 
69
  )
70
  ```
71
 
72
+ ## Fine-tuning with 🤗 peft
73
+ ```python
74
+ model = AutoModelForSequenceClassification.from_pretrained('Synthyra/ESMplusplus_large', num_labels=2, trust_remote_code=True)
75
+ # these modules handle ESM++ and ESM2 attention layers
76
+ target_modules = ["layernorm_qkv.1", "out_proj", "query", "key", "value", "dense"]
77
+
78
+ lora_config = LoraConfig(
79
+ r=8, # choose lora parameters to your liking
80
+ lora_alpha=16,
81
+ lora_dropout=0.01,
82
+ bias="none",
83
+ target_modules=target_modules,
84
+ )
85
+
86
+ # Apply LoRA to the model
87
+ model = get_peft_model(model, lora_config)
88
+
89
+ # Unfreeze the classifier head
90
+ for param in model.classifier.parameters():
91
+ param.requires_grad = True
92
+ ```
93
+
94
+ For a more thourough example of fine-tuning, check out our example script [here](https://github.com/Synthyra/FastPLMs/blob/main/fine_tuning_example.py).
95
+
96
+
97
  ## Returning attention maps
98
  Usually F.scaled_dot_product_attention is used for the attention calculations, which is much faster than native PyTorch. However, it cannot return attention maps.
99
  ESM++ has the option to ```output_attentions```, which will calculate attention manually. This is much slower, so do not use unless you need the attention maps.