Update modeling_esm_plusplus.py
Browse files- modeling_esm_plusplus.py +129 -30
modeling_esm_plusplus.py
CHANGED
@@ -398,9 +398,7 @@ class UnifiedTransformerBlock(nn.Module):
|
|
398 |
attn_output, attn_weights = self.attn(x, attention_mask, output_attentions)
|
399 |
x = x + self.dropout(attn_output) / self.scaling_factor
|
400 |
x = x + self.dropout(self.ffn(x)) / self.scaling_factor
|
401 |
-
|
402 |
-
return x, attn_weights
|
403 |
-
return x
|
404 |
|
405 |
|
406 |
### Model Outputs
|
@@ -452,6 +450,7 @@ class TransformerStack(nn.Module):
|
|
452 |
]
|
453 |
)
|
454 |
self.norm = nn.LayerNorm(d_model, bias=False)
|
|
|
455 |
|
456 |
def forward(
|
457 |
self,
|
@@ -478,12 +477,18 @@ class TransformerStack(nn.Module):
|
|
478 |
attention_mask = attention_mask[:, None, None, :].expand(batch_size, 1, seq_len, seq_len).bool()
|
479 |
|
480 |
for block in self.blocks:
|
481 |
-
if
|
482 |
-
x, attn_weights =
|
483 |
-
|
484 |
-
|
|
|
|
|
|
|
485 |
else:
|
486 |
-
x = block(x, attention_mask, output_attentions)
|
|
|
|
|
|
|
487 |
|
488 |
if output_hidden_states:
|
489 |
assert hidden_states is not None
|
@@ -509,25 +514,30 @@ class ProteinDataset(Dataset):
|
|
509 |
return self.sequences[idx]
|
510 |
|
511 |
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
Implements the base ESM++ architecture with a masked language modeling head.
|
517 |
"""
|
518 |
config_class = ESMplusplusConfig
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
528 |
|
529 |
@classmethod
|
530 |
-
def from_pretrained_esm(cls, model_name: str)
|
531 |
"""Load a pretrained ESM++ model."""
|
532 |
if '300' in model_name:
|
533 |
return ESMplusplus_300M()
|
@@ -548,6 +558,26 @@ class ESMplusplusForMaskedLM(PreTrainedModel):
|
|
548 |
else:
|
549 |
attention_mask = attention_mask.unsqueeze(-1)
|
550 |
return (x * attention_mask).sum(dim=1) / attention_mask.sum(dim=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
551 |
|
552 |
def _collate_fn(self, sequences: list[str]) -> tuple[torch.Tensor, torch.Tensor]:
|
553 |
"""Collate function for batching sequences."""
|
@@ -606,8 +636,14 @@ class ESMplusplusForMaskedLM(PreTrainedModel):
|
|
606 |
return residue_embeddings
|
607 |
elif pooling_type == 'mean':
|
608 |
return self.mean_pooling(residue_embeddings, attention_mask)
|
|
|
|
|
|
|
|
|
|
|
|
|
609 |
else:
|
610 |
-
|
611 |
|
612 |
if sql:
|
613 |
import sqlite3
|
@@ -653,6 +689,67 @@ class ESMplusplusForMaskedLM(PreTrainedModel):
|
|
653 |
|
654 |
return embeddings_dict
|
655 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
656 |
def forward(
|
657 |
self,
|
658 |
input_ids: Optional[torch.Tensor] = None,
|
@@ -695,9 +792,9 @@ class ESMplusplusForMaskedLM(PreTrainedModel):
|
|
695 |
)
|
696 |
|
697 |
|
698 |
-
class ESMplusplusForSequenceClassification(
|
699 |
-
"""
|
700 |
-
|
701 |
Extends the base ESM++ model with a classification head.
|
702 |
"""
|
703 |
def __init__(self, config: ESMplusplusConfig, **kwargs):
|
@@ -709,6 +806,7 @@ class ESMplusplusForSequenceClassification(ESMplusplusForMaskedLM):
|
|
709 |
self.mse = nn.MSELoss()
|
710 |
self.ce = nn.CrossEntropyLoss()
|
711 |
self.bce = nn.BCEWithLogitsLoss()
|
|
|
712 |
|
713 |
def forward(
|
714 |
self,
|
@@ -775,9 +873,9 @@ class ESMplusplusForSequenceClassification(ESMplusplusForMaskedLM):
|
|
775 |
)
|
776 |
|
777 |
|
778 |
-
class ESMplusplusForTokenClassification(
|
779 |
-
"""
|
780 |
-
|
781 |
Extends the base ESM++ model with a token classification head.
|
782 |
"""
|
783 |
def __init__(self, config: ESMplusplusConfig):
|
@@ -787,6 +885,7 @@ class ESMplusplusForTokenClassification(ESMplusplusForMaskedLM):
|
|
787 |
self.classifier = RegressionHead(config.hidden_size, config.num_labels, config.hidden_size * 4)
|
788 |
# Large intermediate projections help with sequence classification tasks (*4)
|
789 |
self.loss_fct = nn.CrossEntropyLoss()
|
|
|
790 |
|
791 |
def forward(
|
792 |
self,
|
|
|
398 |
attn_output, attn_weights = self.attn(x, attention_mask, output_attentions)
|
399 |
x = x + self.dropout(attn_output) / self.scaling_factor
|
400 |
x = x + self.dropout(self.ffn(x)) / self.scaling_factor
|
401 |
+
return x, attn_weights
|
|
|
|
|
402 |
|
403 |
|
404 |
### Model Outputs
|
|
|
450 |
]
|
451 |
)
|
452 |
self.norm = nn.LayerNorm(d_model, bias=False)
|
453 |
+
self.gradient_checkpointing = False
|
454 |
|
455 |
def forward(
|
456 |
self,
|
|
|
477 |
attention_mask = attention_mask[:, None, None, :].expand(batch_size, 1, seq_len, seq_len).bool()
|
478 |
|
479 |
for block in self.blocks:
|
480 |
+
if self.gradient_checkpointing and self.training:
|
481 |
+
x, attn_weights = self._gradient_checkpointing_func(
|
482 |
+
block.__call__,
|
483 |
+
x,
|
484 |
+
attention_mask,
|
485 |
+
output_attentions,
|
486 |
+
)
|
487 |
else:
|
488 |
+
x, attn_weights = block(x, attention_mask, output_attentions)
|
489 |
+
|
490 |
+
if attentions is not None:
|
491 |
+
attentions += (attn_weights,)
|
492 |
|
493 |
if output_hidden_states:
|
494 |
assert hidden_states is not None
|
|
|
514 |
return self.sequences[idx]
|
515 |
|
516 |
|
517 |
+
class PreTrainedESMplusplusModel(PreTrainedModel):
|
518 |
+
"""
|
519 |
+
init weights for ESM++ models
|
|
|
|
|
520 |
"""
|
521 |
config_class = ESMplusplusConfig
|
522 |
+
base_model_prefix = "esm++"
|
523 |
+
supports_gradient_checkpointing = True
|
524 |
+
|
525 |
+
def _init_weights(self, module):
|
526 |
+
"""Initialize the weights"""
|
527 |
+
if isinstance(module, nn.Linear):
|
528 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
529 |
+
if module.bias is not None:
|
530 |
+
module.bias.data.zero_()
|
531 |
+
elif isinstance(module, nn.Embedding):
|
532 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
533 |
+
if module.padding_idx is not None:
|
534 |
+
module.weight.data[module.padding_idx].zero_()
|
535 |
+
elif isinstance(module, nn.LayerNorm):
|
536 |
+
module.bias.data.zero_()
|
537 |
+
module.weight.data.fill_(1.0)
|
538 |
|
539 |
@classmethod
|
540 |
+
def from_pretrained_esm(cls, model_name: str):
|
541 |
"""Load a pretrained ESM++ model."""
|
542 |
if '300' in model_name:
|
543 |
return ESMplusplus_300M()
|
|
|
558 |
else:
|
559 |
attention_mask = attention_mask.unsqueeze(-1)
|
560 |
return (x * attention_mask).sum(dim=1) / attention_mask.sum(dim=1)
|
561 |
+
|
562 |
+
def max_pooling(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
563 |
+
"""Apply max pooling to sequence outputs."""
|
564 |
+
if attention_mask is None:
|
565 |
+
return x.max(dim=1).values
|
566 |
+
else:
|
567 |
+
attention_mask = attention_mask.unsqueeze(-1)
|
568 |
+
return (x * attention_mask).max(dim=1).values
|
569 |
+
|
570 |
+
def min_pooling(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
571 |
+
"""Apply min pooling to sequence outputs."""
|
572 |
+
if attention_mask is None:
|
573 |
+
return x.min(dim=1).values
|
574 |
+
else:
|
575 |
+
attention_mask = attention_mask.unsqueeze(-1)
|
576 |
+
return (x * attention_mask).min(dim=1).values
|
577 |
+
|
578 |
+
def cls_pooling(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
579 |
+
"""Apply cls pooling to sequence outputs."""
|
580 |
+
return x[:, 0, :]
|
581 |
|
582 |
def _collate_fn(self, sequences: list[str]) -> tuple[torch.Tensor, torch.Tensor]:
|
583 |
"""Collate function for batching sequences."""
|
|
|
636 |
return residue_embeddings
|
637 |
elif pooling_type == 'mean':
|
638 |
return self.mean_pooling(residue_embeddings, attention_mask)
|
639 |
+
elif pooling_type == 'max':
|
640 |
+
return self.max_pooling(residue_embeddings, attention_mask)
|
641 |
+
elif pooling_type == 'min':
|
642 |
+
return self.min_pooling(residue_embeddings, attention_mask)
|
643 |
+
elif pooling_type == 'cls':
|
644 |
+
return self.cls_pooling(residue_embeddings, attention_mask)
|
645 |
else:
|
646 |
+
raise ValueError(f"Invalid pooling type: {pooling_type}")
|
647 |
|
648 |
if sql:
|
649 |
import sqlite3
|
|
|
689 |
|
690 |
return embeddings_dict
|
691 |
|
692 |
+
|
693 |
+
### ESM++ Models
|
694 |
+
class ESMplusplusModel(PreTrainedESMplusplusModel):
|
695 |
+
"""
|
696 |
+
ESM++ model. transformer model with no heads
|
697 |
+
"""
|
698 |
+
config_class = ESMplusplusConfig
|
699 |
+
def __init__(self, config: ESMplusplusConfig, **kwargs):
|
700 |
+
super().__init__(config, **kwargs)
|
701 |
+
self.config = config
|
702 |
+
self.vocab_size = config.vocab_size
|
703 |
+
self.embed = nn.Embedding(self.vocab_size, config.hidden_size)
|
704 |
+
self.transformer = TransformerStack(config.hidden_size, config.num_attention_heads, config.num_hidden_layers, config.dropout)
|
705 |
+
self.tokenizer = EsmSequenceTokenizer()
|
706 |
+
self.init_weights()
|
707 |
+
|
708 |
+
def forward(
|
709 |
+
self,
|
710 |
+
input_ids: Optional[torch.Tensor] = None,
|
711 |
+
attention_mask: Optional[torch.Tensor] = None,
|
712 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
713 |
+
output_attentions: Optional[bool] = None,
|
714 |
+
output_hidden_states: Optional[bool] = None,
|
715 |
+
return_dict: Optional[bool] = None, # to play nice with HF adjacent packages
|
716 |
+
) -> TransformerOutput:
|
717 |
+
"""Forward pass for masked language modeling.
|
718 |
+
|
719 |
+
Args:
|
720 |
+
input_ids: Input token IDs
|
721 |
+
attention_mask: Attention mask
|
722 |
+
inputs_embeds: Optional precomputed embeddings
|
723 |
+
output_hidden_states: Whether to return all hidden states
|
724 |
+
output_attentions: Whether to return attention weights
|
725 |
+
|
726 |
+
Returns:
|
727 |
+
TransformerOutput containing last hidden state and optionally all hidden states and attention weights
|
728 |
+
"""
|
729 |
+
if inputs_embeds is None:
|
730 |
+
x = self.embed(input_ids)
|
731 |
+
else:
|
732 |
+
x = inputs_embeds
|
733 |
+
return self.transformer(x, attention_mask, output_hidden_states, output_attentions)
|
734 |
+
|
735 |
+
|
736 |
+
class ESMplusplusForMaskedLM(PreTrainedESMplusplusModel):
|
737 |
+
"""
|
738 |
+
ESM++ model for masked language modeling.
|
739 |
+
Implements the base ESM++ architecture with a masked language modeling head.
|
740 |
+
"""
|
741 |
+
config_class = ESMplusplusConfig
|
742 |
+
def __init__(self, config: ESMplusplusConfig, **kwargs):
|
743 |
+
super().__init__(config, **kwargs)
|
744 |
+
self.config = config
|
745 |
+
self.vocab_size = config.vocab_size
|
746 |
+
self.embed = nn.Embedding(self.vocab_size, config.hidden_size)
|
747 |
+
self.transformer = TransformerStack(config.hidden_size, config.num_attention_heads, config.num_hidden_layers, config.dropout)
|
748 |
+
self.sequence_head = RegressionHead(config.hidden_size, self.vocab_size)
|
749 |
+
self.ce_loss = nn.CrossEntropyLoss()
|
750 |
+
self.tokenizer = EsmSequenceTokenizer()
|
751 |
+
self.init_weights()
|
752 |
+
|
753 |
def forward(
|
754 |
self,
|
755 |
input_ids: Optional[torch.Tensor] = None,
|
|
|
792 |
)
|
793 |
|
794 |
|
795 |
+
class ESMplusplusForSequenceClassification(PreTrainedESMplusplusModel):
|
796 |
+
"""
|
797 |
+
ESM++ model for sequence classification.
|
798 |
Extends the base ESM++ model with a classification head.
|
799 |
"""
|
800 |
def __init__(self, config: ESMplusplusConfig, **kwargs):
|
|
|
806 |
self.mse = nn.MSELoss()
|
807 |
self.ce = nn.CrossEntropyLoss()
|
808 |
self.bce = nn.BCEWithLogitsLoss()
|
809 |
+
self.init_weights()
|
810 |
|
811 |
def forward(
|
812 |
self,
|
|
|
873 |
)
|
874 |
|
875 |
|
876 |
+
class ESMplusplusForTokenClassification(PreTrainedESMplusplusModel):
|
877 |
+
"""
|
878 |
+
ESM++ model for token classification.
|
879 |
Extends the base ESM++ model with a token classification head.
|
880 |
"""
|
881 |
def __init__(self, config: ESMplusplusConfig):
|
|
|
885 |
self.classifier = RegressionHead(config.hidden_size, config.num_labels, config.hidden_size * 4)
|
886 |
# Large intermediate projections help with sequence classification tasks (*4)
|
887 |
self.loss_fct = nn.CrossEntropyLoss()
|
888 |
+
self.init_weights()
|
889 |
|
890 |
def forward(
|
891 |
self,
|