File size: 25,295 Bytes
700924b
 
 
 
 
7288587
700924b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7288587
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
700924b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
874ce57
700924b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7288587
700924b
 
 
874ce57
700924b
 
 
 
874ce57
 
700924b
 
 
 
 
 
 
 
 
 
 
 
 
 
7288587
874ce57
 
700924b
 
 
 
 
874ce57
700924b
 
874ce57
700924b
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
import torch
import torch.nn as nn
from torch.nn import functional as F
from typing import Optional, Tuple, Union
from einops import rearrange
from transformers import PreTrainedModel, PretrainedConfig
from transformers.modeling_outputs import (
    MaskedLMOutput,
    BaseModelOutputWithPastAndCrossAttentions,
    BaseModelOutputWithPoolingAndCrossAttentions,
    SequenceClassifierOutput,
    TokenClassifierOutput
)
from transformers.models.esm.modeling_esm import (
    EsmIntermediate,
    EsmOutput,
    EsmPooler,
    EsmLMHead,
    EsmSelfOutput,
    EsmClassificationHead,
    create_position_ids_from_input_ids,
)


class FastEsmConfig(PretrainedConfig):
    model_type = "fast_esm"

    def __init__(
        self,
        vocab_size=None,
        mask_token_id=None,
        pad_token_id=None,
        hidden_size=768,
        num_hidden_layers=12,
        num_attention_heads=12,
        intermediate_size=3072,
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=1026,
        initializer_range=0.02,
        layer_norm_eps=1e-12,
        position_embedding_type="absolute",
        emb_layer_norm_before=None,
        **kwargs,
    ):
        super().__init__(pad_token_id=pad_token_id, mask_token_id=mask_token_id, **kwargs)

        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.position_embedding_type = position_embedding_type
        self.emb_layer_norm_before = emb_layer_norm_before

    def to_dict(self):
        """
        Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].

        Returns:
            `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
        """
        output = super().to_dict()
        return output


def rotate_half(x):
    x1, x2 = x.chunk(2, dim=-1)
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(x, cos, sin):
    cos = cos[:, :, : x.shape[-2], :]
    sin = sin[:, :, : x.shape[-2], :]

    return (x * cos) + (rotate_half(x) * sin)


class RotaryEmbedding(torch.nn.Module):
    """
    Rotary position embeddings based on those in
    [RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation
    matrices which depend on their relative positions.
    """

    def __init__(self, dim: int):
        super().__init__()
        # Generate and save the inverse frequency buffer (non trainable)
        inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim))
        inv_freq = inv_freq
        self.register_buffer("inv_freq", inv_freq)

        self._seq_len_cached = None
        self._cos_cached = None
        self._sin_cached = None

    def _update_cos_sin_tables(self, x, seq_dimension=2):
        seq_len = x.shape[seq_dimension]

        # Reset the tables if the sequence length has changed,
        # or if we're on a new device (possibly due to tracing for instance)
        if seq_len != self._seq_len_cached or self._cos_cached.device != x.device:
            self._seq_len_cached = seq_len
            t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(self.inv_freq)
            freqs = torch.outer(t, self.inv_freq)
            emb = torch.cat((freqs, freqs), dim=-1).to(x.device)

            self._cos_cached = emb.cos()[None, None, :, :].to(x.dtype)
            self._sin_cached = emb.sin()[None, None, :, :].to(x.dtype)

        return self._cos_cached, self._sin_cached

    def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        self._cos_cached, self._sin_cached = self._update_cos_sin_tables(k, seq_dimension=-2)

        return (
            apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached),
            apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached),
        )


class EsmEmbeddings(nn.Module):
    """
    Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
    """

    def __init__(self, config):
        super().__init__()
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
        if config.emb_layer_norm_before:
            self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        else:
            self.layer_norm = None
        self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
        self.register_buffer(
            "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
        )

        self.padding_idx = config.pad_token_id
        self.position_embeddings = nn.Embedding(
            config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
        )
        # Token dropout does not work correctly so we disable it
        # self.token_dropout = config.token_dropout
        self.mask_token_id = config.mask_token_id

    def forward(
        self, input_ids=None, attention_mask=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
    ):
        if position_ids is None:
            if input_ids is not None:
                # Create the position ids from the input token ids. Any padded tokens remain padded.
                position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
            else:
                position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)

        embeddings = inputs_embeds

        if self.position_embedding_type == "absolute":
            position_embeddings = self.position_embeddings(position_ids)
            embeddings = embeddings + position_embeddings

        if self.layer_norm is not None:
            embeddings = self.layer_norm(embeddings)
        if attention_mask is not None:
            embeddings = (embeddings * attention_mask.unsqueeze(-1)).to(embeddings.dtype)
        return embeddings

    def create_position_ids_from_inputs_embeds(self, inputs_embeds):
        """
        We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.

        Args:
            inputs_embeds: torch.Tensor

        Returns: torch.Tensor
        """
        input_shape = inputs_embeds.size()[:-1]
        sequence_length = input_shape[1]

        position_ids = torch.arange(
            self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
        )
        return position_ids.unsqueeze(0).expand(input_shape)


class EsmSelfAttention(nn.Module):
    def __init__(self, config, position_embedding_type=None):
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
            raise ValueError(
                f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
                f"heads ({config.num_attention_heads})"
            )

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)
        self.scale = self.attention_head_size**-0.5

        self.dropout_prob = config.attention_probs_dropout_prob
        self.position_embedding_type = position_embedding_type or getattr(
            config, "position_embedding_type", "absolute"
        )
        self.rotary_embeddings = None
        if self.position_embedding_type == "rotary":
            self.rotary_embeddings = RotaryEmbedding(dim=self.attention_head_size)

    def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
        return rearrange(x, 'b s (h d) -> b h s d', h=self.num_attention_heads)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.FloatTensor] = None,
    ) -> Tuple[torch.Tensor]:
        query_layer = self.transpose_for_scores(self.query(hidden_states)) * self.scale
        key_layer = self.transpose_for_scores(self.key(hidden_states))
        value_layer = self.transpose_for_scores(self.value(hidden_states))

        if self.position_embedding_type == "rotary":
            query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer)

        context_layer = F.scaled_dot_product_attention(
            query_layer,
            key_layer,
            value_layer,
            attn_mask=attention_mask,
            dropout_p=self.dropout_prob,
            scale=1.0
        )
        return rearrange(context_layer, 'b h s d -> b s (h d)')
        

class EsmAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.self = EsmSelfAttention(config)
        self.output = EsmSelfOutput(config)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
    ):
        hidden_states_ln = self.LayerNorm(hidden_states)
        attention_output = self.self(
            hidden_states_ln,
            attention_mask,
        )
        return self.output(attention_output, hidden_states)


class EsmLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.attention = EsmAttention(config)
        self.intermediate = EsmIntermediate(config)
        self.output = EsmOutput(config)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
    ):
        attention_output = self.attention(
            hidden_states,
            attention_mask,
        )
        layer_output = self.feed_forward_chunk(attention_output)
        return layer_output

    def feed_forward_chunk(self, attention_output):
        attention_output_ln = self.LayerNorm(attention_output)
        intermediate_output = self.intermediate(attention_output_ln)
        layer_output = self.output(intermediate_output, attention_output)
        return layer_output


class EsmEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.layer = nn.ModuleList([EsmLayer(config) for _ in range(config.num_hidden_layers)])
        self.emb_layer_norm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        output_hidden_states=False,
    ):
        all_hidden_states = () if output_hidden_states else None
        for layer_module in self.layer:
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            if self.gradient_checkpointing and self.training:
                hidden_states = self._gradient_checkpointing_func(
                    layer_module.__call__,
                    hidden_states,
                    attention_mask,
                )
            else:
                hidden_states = layer_module(
                    hidden_states,
                    attention_mask,
                )

        if self.emb_layer_norm_after:
            hidden_states = self.emb_layer_norm_after(hidden_states)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
        )


class FastEsmPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """
    config_class = FastEsmConfig
    base_model_prefix = "fastesm"
    supports_gradient_checkpointing = True
    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

    def get_input_embeddings(self) -> nn.Module:
        try:
            return self.embeddings.word_embeddings
        except AttributeError:
            return self.esm.embeddings.word_embeddings


class FastEsmModel(FastEsmPreTrainedModel):
    def __init__(self, config, add_pooling_layer=True):
        super().__init__(config)
        self.config = config
        self.embeddings = EsmEmbeddings(config)
        self.encoder = EsmEncoder(config)
        self.pooler = EsmPooler(config) if add_pooling_layer else None
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, value):
        self.embeddings.word_embeddings = value

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        output_hidden_states: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
        if output_attentions is not None:
            raise ValueError("output_attentions is not supported by F.scaled_dot_product_attention")
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        batch_size, seq_length = input_shape
        embedding_output = self.embeddings(
            input_ids=input_ids,
            position_ids=position_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
        )
        # Prepare attention mask
        if attention_mask is not None:
            # attention_mask shape should be (batch_size, 1, 1, seq_length)
            # Expand to (batch_size, 1, seq_length, seq_length)
            extended_attention_mask = attention_mask[:, None, None, :].expand(
                batch_size, 1, seq_length, seq_length
            ).bool()
        else:
            extended_attention_mask = None

        encoder_outputs = self.encoder(
            embedding_output,
            attention_mask=extended_attention_mask,
            output_hidden_states=output_hidden_states,
        )
        sequence_output = encoder_outputs.last_hidden_state
        pooled_output = self.pooler(sequence_output) if self.pooler is not None else None

        return BaseModelOutputWithPoolingAndCrossAttentions(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
        )


class FastEsmForMaskedLM(FastEsmPreTrainedModel):
    _tied_weights_keys = ["lm_head.decoder.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.esm = FastEsmModel(config, add_pooling_layer=False)
        self.lm_head = EsmLMHead(config)
        self.loss_fct = nn.CrossEntropyLoss()
        self.init_weights()

    def get_output_embeddings(self):
        return self.lm_head.decoder

    def set_output_embeddings(self, new_embeddings):
        self.lm_head.decoder = new_embeddings

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
    ) -> Union[Tuple, MaskedLMOutput]:
        outputs = self.esm(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            output_hidden_states=output_hidden_states,
            output_attentions=output_attentions,
        )
        sequence_output = outputs.last_hidden_state
        prediction_scores = self.lm_head(sequence_output)

        loss = None
        if labels is not None:
            labels = labels.to(prediction_scores.device)
            loss = self.loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))

        return MaskedLMOutput(
            loss=loss,
            logits=prediction_scores,
            hidden_states=outputs.hidden_states,
        )

    def predict_contacts(self, tokens, attention_mask):
        raise NotImplementedError("predict_contacts is not supported by F.scaled_dot_product_attention")


class FastEsmForSequenceClassification(FastEsmPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.config = config
        self.esm = FastEsmModel(config, add_pooling_layer=False)
        self.classifier = EsmClassificationHead(config)
        self.mse = nn.MSELoss()
        self.ce = nn.CrossEntropyLoss()
        self.bce = nn.BCEWithLogitsLoss()
        self.init_weights()

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
    ) -> Union[Tuple, SequenceClassifierOutput]:
        outputs = self.esm(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )
        sequence_output = outputs.last_hidden_state
        logits = self.classifier(sequence_output)

        loss = None
        if labels is not None:
            labels = labels.to(logits.device)
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                if self.num_labels == 1:
                    loss = self.mse(logits.squeeze(), labels.squeeze())
                else:
                    loss = self.mse(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss = self.ce(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss = self.bce(logits, labels)

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
        )


class FastEsmForTokenClassification(FastEsmPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.esm = FastEsmModel(config, add_pooling_layer=False)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)
        self.loss_fct = nn.CrossEntropyLoss()
        self.init_weights()

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
    ) -> Union[Tuple, TokenClassifierOutput]:
        outputs = self.esm(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )
        sequence_output = outputs.last_hidden_state
        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)

        loss = None
        if labels is not None:
            labels = labels.to(logits.device)
            loss = self.loss_fct(logits.view(-1, self.num_labels), labels.view(-1))

        return TokenClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
        )


if __name__ == "__main__":
    """
    Test the hidden state differences between the FastEsmModel and the HF EsmModel.
    In full precision, the differences are very very small, but nonzero due to floating point issues with F.scaled_dot_product_attention.
    In Pytorch 2.5+ (and linux kernel), this implementation is very fast and uses less memory than the HF implementation.
    """
    import random
    from transformers import EsmForMaskedLM as TransformersEsmModel, EsmTokenizer

    model_paths = [
        "facebook/esm2_t6_8M_UR50D",
        "facebook/esm2_t12_35M_UR50D",
        #"facebook/esm2_t30_150M_UR50D",
        #"facebook/esm2_t33_650M_UR50D",
    ]
    canonical_amino_acids = "ACDEFGHIKLMNPQRSTVWY"
    length = 64
    seq_count = 100
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    tolerances = [1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8]

    def generate_random_sequence(length: int) -> str:
        return 'M' + "".join(random.choices(canonical_amino_acids, k=length))

    print("Percentage of hidden states that are within the tolerance:")
    for model_path in model_paths:
        print(f"Testing {model_path}...")
        tokenizer = EsmTokenizer.from_pretrained(model_path)
        config = FastEsmConfig.from_pretrained(model_path)
        fast_model = FastEsmForMaskedLM(config).from_pretrained(model_path).to(device)
        model = TransformersEsmModel.from_pretrained(model_path, token_dropout=False).to(device)

        counts = [0] * len(tolerances)
        for _ in range(seq_count):
            example_seq = generate_random_sequence(length)
            fast_tokens = tokenizer(example_seq, return_tensors="pt").input_ids.to(device)
            fast_output = fast_model(fast_tokens, output_hidden_states=True).hidden_states[-1].detach().cpu()

            model_tokens = tokenizer(example_seq, return_tensors="pt").input_ids.to(device)
            model_output = model(model_tokens, output_hidden_states=True).hidden_states[-1].detach().cpu()

            for i, atol in enumerate(tolerances):
                if torch.allclose(fast_output, model_output, atol=atol):
                    counts[i] += 1

        print(f"{model_path}:")
        for i, atol in enumerate(tolerances):
            print(f"    tolerance={atol}: {counts[i] / seq_count * 100}%")
    
        model.cpu()
        fast_model.cpu()
        del model
        del fast_model
        torch.cuda.empty_cache()