File size: 2,391 Bytes
01c904a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging


logger = logging.get_logger(__name__)


class FastEsmConfig(PretrainedConfig):
    model_type = "fast_esm"

    def __init__(

        self,

        vocab_size=None,

        mask_token_id=None,

        pad_token_id=None,

        hidden_size=768,

        num_hidden_layers=12,

        num_attention_heads=12,

        intermediate_size=3072,

        hidden_dropout_prob=0.1,

        attention_probs_dropout_prob=0.1,

        max_position_embeddings=1026,

        initializer_range=0.02,

        layer_norm_eps=1e-12,

        position_embedding_type="absolute",

        emb_layer_norm_before=None,

        **kwargs,

    ):
        super().__init__(pad_token_id=pad_token_id, mask_token_id=mask_token_id, **kwargs)

        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.position_embedding_type = position_embedding_type
        self.emb_layer_norm_before = emb_layer_norm_before

    def to_dict(self):
        """

        Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].



        Returns:

            `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,

        """
        output = super().to_dict()
        return output


def get_default_vocab_list():
    return (
        "<cls>",
        "<pad>",
        "<eos>",
        "<unk>",
        "L",
        "A",
        "G",
        "V",
        "S",
        "E",
        "R",
        "T",
        "I",
        "D",
        "P",
        "K",
        "Q",
        "N",
        "F",
        "Y",
        "M",
        "H",
        "W",
        "C",
        "X",
        "B",
        "U",
        "Z",
        "O",
        ".",
        "-",
        "<null_1>",
        "<mask>",
    )