File size: 51,082 Bytes
888b364
 
9966ab1
888b364
9966ab1
 
 
888b364
44cde8c
9966ab1
888b364
44cde8c
888b364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44cde8c
 
9966ab1
 
 
 
 
44cde8c
 
888b364
 
 
 
9966ab1
 
 
 
 
 
 
 
 
 
 
 
 
 
888b364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9966ab1
888b364
 
 
 
9966ab1
888b364
 
 
 
 
9966ab1
888b364
 
 
 
9966ab1
888b364
 
 
 
 
 
9966ab1
888b364
 
 
 
9966ab1
888b364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9966ab1
888b364
 
 
 
 
9966ab1
888b364
 
9966ab1
888b364
9966ab1
888b364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9966ab1
888b364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9966ab1
 
 
 
 
 
888b364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9966ab1
888b364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9966ab1
 
888b364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9966ab1
 
888b364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9966ab1
 
888b364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9966ab1
 
 
888b364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9966ab1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
888b364
 
 
 
 
 
 
 
 
 
 
9966ab1
 
 
 
 
888b364
9966ab1
 
 
 
888b364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9966ab1
 
888b364
 
 
9966ab1
 
888b364
 
9966ab1
888b364
9966ab1
888b364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9966ab1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
888b364
9966ab1
 
 
888b364
9966ab1
888b364
 
9966ab1
888b364
 
9966ab1
888b364
 
 
 
 
 
 
 
 
 
 
7ce555f
9966ab1
888b364
 
9966ab1
888b364
9966ab1
888b364
9966ab1
 
 
888b364
 
 
 
 
9966ab1
888b364
 
 
9966ab1
888b364
9966ab1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
888b364
 
 
9966ab1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf130ec
 
9966ab1
 
 
 
 
 
 
 
 
 
1710ca2
 
888b364
 
 
9966ab1
 
 
888b364
 
 
 
 
 
 
 
 
9966ab1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
888b364
 
9966ab1
888b364
9966ab1
 
888b364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44cde8c
888b364
 
 
 
 
 
 
 
 
 
 
 
9966ab1
888b364
 
 
 
 
 
 
 
 
 
 
 
 
 
9966ab1
888b364
 
 
 
 
 
 
 
 
 
 
 
 
9966ab1
1710ca2
 
888b364
 
 
 
 
 
 
 
 
 
 
 
9966ab1
 
 
 
 
 
888b364
 
9966ab1
888b364
9966ab1
 
888b364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44cde8c
888b364
 
 
 
 
 
 
 
 
 
 
56fe2cc
 
888b364
56fe2cc
888b364
 
 
 
56fe2cc
888b364
 
 
 
 
56fe2cc
 
888b364
 
 
9966ab1
888b364
 
1710ca2
 
888b364
 
 
 
 
 
 
 
 
 
 
9966ab1
 
 
 
 
 
888b364
 
9966ab1
888b364
9966ab1
 
 
888b364
 
 
44cde8c
888b364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44cde8c
888b364
 
3e5d77a
888b364
 
 
 
 
9966ab1
1710ca2
 
888b364
 
 
 
 
 
 
 
 
9966ab1
 
 
 
 
 
888b364
 
9966ab1
888b364
9966ab1
 
 
888b364
 
9f690c3
888b364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9966ab1
1710ca2
 
888b364
 
 
 
 
 
 
9966ab1
 
 
 
 
 
888b364
 
9966ab1
888b364
9966ab1
 
 
888b364
 
9f690c3
888b364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9966ab1
 
888b364
9966ab1
 
888b364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
import torch
import torch.nn as nn
import os
from torch.nn import functional as F
from torch.utils.data import Dataset as TorchDataset
from torch.utils.data import DataLoader as DataLoader
from typing import Optional, Tuple, Union, Callable, List, Dict, Any
from einops import rearrange
from dataclasses import dataclass
from transformers import PreTrainedModel, PretrainedConfig, EsmTokenizer, PreTrainedTokenizerBase
from transformers.modeling_outputs import (
    ModelOutput,
    BaseModelOutputWithPastAndCrossAttentions,
    BaseModelOutputWithPoolingAndCrossAttentions,
    SequenceClassifierOutput,
    TokenClassifierOutput
)
from transformers.models.esm.modeling_esm import (
    EsmIntermediate,
    EsmOutput,
    EsmPooler,
    EsmLMHead,
    EsmSelfOutput,
    EsmClassificationHead,
)
from tqdm.auto import tqdm


@dataclass
class EsmMaskedLMOutput(ModelOutput):
    loss: Optional[torch.Tensor] = None
    logits: Optional[torch.Tensor] = None
    last_hidden_state: Optional[torch.Tensor] = None
    hidden_states: Optional[Tuple[torch.Tensor, ...]] = None
    attentions: Optional[Tuple[torch.Tensor, ...]] = None


class FastEsmConfig(PretrainedConfig):
    model_type = "fast_esm"
    def __init__(

        self,

        vocab_size: int = None,

        mask_token_id: int = None,

        pad_token_id: int = None,

        hidden_size: int = 768,

        num_hidden_layers: int = 12,

        num_attention_heads: int = 12,

        intermediate_size: int = 3072,

        hidden_dropout_prob: float = 0.1,

        attention_probs_dropout_prob: float = 0.1,

        max_position_embeddings: int = 1026,

        initializer_range: float = 0.02,

        layer_norm_eps: float = 1e-12,

        position_embedding_type: str = "absolute",

        emb_layer_norm_before: bool = None,

        **kwargs,

    ):
        super().__init__(pad_token_id=pad_token_id, mask_token_id=mask_token_id, **kwargs)

        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.position_embedding_type = position_embedding_type
        self.emb_layer_norm_before = emb_layer_norm_before

    def to_dict(self) -> Dict[str, Any]:
        """

        Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].



        Returns:

            `Dict[str, any]`: Dictionar y of all the attributes that make up this configuration instance,

        """
        output = super().to_dict()
        return output


def rotate_half(x: torch.Tensor) -> torch.Tensor:
    x1, x2 = x.chunk(2, dim=-1)
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
    cos = cos[:, :, : x.shape[-2], :]
    sin = sin[:, :, : x.shape[-2], :]

    return (x * cos) + (rotate_half(x) * sin)


def symmetrize(x: torch.Tensor) -> torch.Tensor:
    "Make layer symmetric in final two dimensions, used for contact prediction."
    return x + x.transpose(-1, -2)


def average_product_correct(x: torch.Tensor) -> torch.Tensor:
    "Perform average product correct, used for contact prediction."
    a1 = x.sum(-1, keepdims=True)
    a2 = x.sum(-2, keepdims=True)
    a12 = x.sum((-1, -2), keepdims=True)

    avg = a1 * a2
    avg.div_(a12)  # in-place to reduce memory
    normalized = x - avg
    return normalized


class EsmContactPredictionHead(nn.Module):
    """Performs symmetrization, apc, and computes a logistic regression on the output features"""

    def __init__(

        self,

        in_features: int,

        bias: bool = True,

        eos_idx: int = 2,

    ):
        super().__init__()
        self.in_features = in_features
        self.eos_idx = eos_idx
        self.regression = nn.Linear(in_features, 1, bias=bias)
        self.activation = nn.Sigmoid()

    def forward(self, input_ids: torch.Tensor, attentions: torch.Tensor) -> torch.Tensor:
        # remove eos token attentions
        eos_mask = input_ids.ne(self.eos_idx).to(attentions)
        eos_mask = eos_mask.unsqueeze(1) * eos_mask.unsqueeze(2)
        attentions = attentions * eos_mask[:, None, None, :, :]
        attentions = attentions[..., :-1, :-1]
        # remove cls token attentions
        attentions = attentions[..., 1:, 1:]
        batch_size, layers, heads, seqlen, _ = attentions.size()
        attentions = attentions.view(batch_size, layers * heads, seqlen, seqlen)

        # features: batch x channels x tokens x tokens (symmetric)
        attentions = attentions.to(
            self.regression.weight.device
        )  # attentions always float32, may need to convert to float16
        attentions = average_product_correct(symmetrize(attentions))
        attentions = attentions.permute(0, 2, 3, 1)
        return self.activation(self.regression(attentions).squeeze(3))


class RotaryEmbedding(torch.nn.Module):
    """

    Rotary position embeddings based on those in

    [RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation

    matrices which depend on their relative positions.

    """

    def __init__(self, dim: int):
        super().__init__()
        # Generate and save the inverse frequency buffer (non trainable)
        inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim))
        inv_freq = inv_freq
        self.register_buffer("inv_freq", inv_freq)

        self._seq_len_cached = None
        self._cos_cached = None
        self._sin_cached = None

    def _update_cos_sin_tables(self, x: torch.Tensor, seq_dimension: int = 2) -> Tuple[torch.Tensor, torch.Tensor]:
        seq_len = x.shape[seq_dimension]

        # Reset the tables if the sequence length has changed,
        # or if we're on a new device (possibly due to tracing for instance)
        if seq_len != self._seq_len_cached or self._cos_cached.device != x.device:
            self._seq_len_cached = seq_len
            t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(self.inv_freq)
            freqs = torch.outer(t, self.inv_freq)
            emb = torch.cat((freqs, freqs), dim=-1).to(x.device)

            self._cos_cached = emb.cos()[None, None, :, :].to(x.dtype)
            self._sin_cached = emb.sin()[None, None, :, :].to(x.dtype)

        return self._cos_cached, self._sin_cached

    def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        self._cos_cached, self._sin_cached = self._update_cos_sin_tables(k, seq_dimension=-2)

        return (
            apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached),
            apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached),
        )


class EsmEmbeddings(nn.Module):
    """

    Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.

    """

    def __init__(self, config):
        super().__init__()
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
        if config.emb_layer_norm_before:
            self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        else:
            self.layer_norm = None
        self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
        self.register_buffer(
            "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
        )

    def forward(

        self,

        input_ids: Optional[torch.Tensor] = None,

        attention_mask: Optional[torch.Tensor] = None,

        position_ids: Optional[torch.Tensor] = None,

        inputs_embeds: Optional[torch.Tensor] = None,

        past_key_values_length: Optional[int] = 0,

    ):
        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)

        embeddings = inputs_embeds

        if self.layer_norm is not None:
            embeddings = self.layer_norm(embeddings)
        if attention_mask is not None:
            embeddings = (embeddings * attention_mask.unsqueeze(-1)).to(embeddings.dtype)
        return embeddings

    def create_position_ids_from_inputs_embeds(self, inputs_embeds):
        """

        We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.



        Args:

            inputs_embeds: torch.Tensor



        Returns: torch.Tensor

        """
        input_shape = inputs_embeds.size()[:-1]
        sequence_length = input_shape[1]

        position_ids = torch.arange(
            self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
        )
        return position_ids.unsqueeze(0).expand(input_shape)


class EsmSelfAttention(nn.Module):
    def __init__(self, config, position_embedding_type: Optional[str] = None):
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
            raise ValueError(
                f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
                f"heads ({config.num_attention_heads})"
            )

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)
        self.scale = self.attention_head_size**-0.5

        self.dropout_prob = config.attention_probs_dropout_prob
        self.position_embedding_type = position_embedding_type or getattr(
            config, "position_embedding_type", "absolute"
        )
        self.rotary_embeddings = None
        if self.position_embedding_type == "rotary":
            self.rotary_embeddings = RotaryEmbedding(dim=self.attention_head_size)

    def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
        return rearrange(x, 'b s (h d) -> b h s d', h=self.num_attention_heads)

    def forward(

        self,

        hidden_states: torch.Tensor,

        attention_mask: Optional[torch.Tensor] = None,

        output_attentions: Optional[bool] = False,

    ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
        """Forward pass for self attention.

        

        Args:

            hidden_states: Input tensor

            attention_mask: Optional attention mask

            output_attentions: Whether to return attention weights

            

        Returns:

            Output tensor and optionally attention weights

        """
        query_layer = self.transpose_for_scores(self.query(hidden_states)) * self.scale
        key_layer = self.transpose_for_scores(self.key(hidden_states))
        value_layer = self.transpose_for_scores(self.value(hidden_states))

        if self.position_embedding_type == "rotary":
            query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer)

        if output_attentions:
            # Manual attention computation to get attention weights
            attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
            if attention_mask is not None:
                attention_scores = attention_scores + attention_mask
            attention_probs = F.softmax(attention_scores, dim=-1)
            if self.dropout_prob > 0:
                attention_probs = F.dropout(attention_probs, p=self.dropout_prob, training=self.training)
            context_layer = torch.matmul(attention_probs, value_layer)
            context_layer = rearrange(context_layer, 'b h s d -> b s (h d)')
            return context_layer, attention_probs
        else:
            context_layer = F.scaled_dot_product_attention(
                query_layer,
                key_layer,
                value_layer,
                attn_mask=attention_mask,
                dropout_p=self.dropout_prob,
                scale=1.0
            )
            context_layer = rearrange(context_layer, 'b h s d -> b s (h d)')
            return context_layer
        

class EsmAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.self = EsmSelfAttention(config)
        self.output = EsmSelfOutput(config)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

    def forward(

        self,

        hidden_states: torch.Tensor,

        attention_mask: Optional[torch.Tensor] = None,

        output_attentions: Optional[bool] = False,

    ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
        """Forward pass for attention layer.

        

        Args:

            hidden_states: Input tensor

            attention_mask: Optional attention mask

            output_attentions: Whether to return attention weights

            

        Returns:

            Output tensor and optionally attention weights

        """
        hidden_states_ln = self.LayerNorm(hidden_states)
        self_outputs = self.self(
            hidden_states_ln,
            attention_mask,
            output_attentions,
        )
        if output_attentions:
            attention_output, attention_weights = self_outputs
            attention_output = self.output(attention_output, hidden_states)
            return attention_output, attention_weights
        else:
            attention_output = self_outputs
            return self.output(attention_output, hidden_states)


class EsmLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.attention = EsmAttention(config)
        self.intermediate = EsmIntermediate(config)
        self.output = EsmOutput(config)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

    def forward(

        self,

        hidden_states: torch.Tensor,

        attention_mask: Optional[torch.Tensor] = None,

        output_attentions: Optional[bool] = False,

    ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
        """Forward pass for transformer layer.

        

        Args:

            hidden_states: Input tensor

            attention_mask: Optional attention mask

            output_attentions: Whether to return attention weights

            

        Returns:

            Output tensor and optionally attention weights

        """
        attention_outputs = self.attention(
            hidden_states,
            attention_mask,
            output_attentions,
        )
        if output_attentions:
            attention_output, attention_weights = attention_outputs
        else:
            attention_output = attention_outputs
            attention_weights = None

        layer_output = self.feed_forward_chunk(attention_output)
        
        if output_attentions:
            return layer_output, attention_weights
        return layer_output

    def feed_forward_chunk(self, attention_output):
        attention_output_ln = self.LayerNorm(attention_output)
        intermediate_output = self.intermediate(attention_output_ln)
        layer_output = self.output(intermediate_output, attention_output)
        return layer_output


class EsmEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.layer = nn.ModuleList([EsmLayer(config) for _ in range(config.num_hidden_layers)])
        self.emb_layer_norm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.gradient_checkpointing = False

    def forward(

        self,

        hidden_states: torch.Tensor,

        attention_mask: Optional[torch.Tensor] = None,

        output_hidden_states: Optional[bool] = False,

        output_attentions: Optional[bool] = False,

    ) -> BaseModelOutputWithPastAndCrossAttentions:
        """Forward pass for transformer encoder.

        

        Args:

            hidden_states: Input tensor

            attention_mask: Optional attention mask

            output_hidden_states: Whether to return all hidden states

            output_attentions: Whether to return attention weights

            

        Returns:

            BaseModelOutputWithPastAndCrossAttentions containing model outputs

        """
        all_hidden_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None

        for layer_module in self.layer:
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    layer_module.__call__,
                    hidden_states,
                    attention_mask,
                    output_attentions,
                )
            else:
                layer_outputs = layer_module(
                    hidden_states,
                    attention_mask,
                    output_attentions,
                )

            if output_attentions:
                hidden_states, attention_weights = layer_outputs
                all_attentions = all_attentions + (attention_weights,)
            else:
                hidden_states = layer_outputs

        if self.emb_layer_norm_after:
            hidden_states = self.emb_layer_norm_after(hidden_states)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_attentions,
        )


### Support for embedding datasets with low code
class Pooler:
    def __init__(self, pooling_types: List[str]):
        self.pooling_types = pooling_types
        self.pooling_options = {
            'mean': self.mean_pooling,
            'max': self.max_pooling,
            'min': self.min_pooling,
            'norm': self.norm_pooling,
            'prod': self.prod_pooling,
            'median': self.median_pooling,
            'std': self.std_pooling,
            'var': self.var_pooling,
            'cls': self.cls_pooling,
        }

    def mean_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # (b, L, d) -> (b, d)
        if attention_mask is None:
            return emb.mean(dim=1)
        else:
            attention_mask = attention_mask.unsqueeze(-1)
            return (emb * attention_mask).sum(dim=1) / attention_mask.sum(dim=1)

    def max_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # (b, L, d) -> (b, d)
        if attention_mask is None:
            return emb.max(dim=1).values
        else:
            attention_mask = attention_mask.unsqueeze(-1)
            return (emb * attention_mask).max(dim=1).values
    
    def min_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # (b, L, d) -> (b, d)
        if attention_mask is None:
            return emb.min(dim=1).values
        else:
            attention_mask = attention_mask.unsqueeze(-1)
            return (emb * attention_mask).min(dim=1).values

    def norm_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # (b, L, d) -> (b, d)
        if attention_mask is None:
            return emb.norm(dim=1, p=2)
        else:
            attention_mask = attention_mask.unsqueeze(-1)
            return (emb * attention_mask).norm(dim=1, p=2)

    def prod_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # (b, L, d) -> (b, d)
        length = emb.shape[1]
        if attention_mask is None:
            return emb.prod(dim=1) / length
        else:
            attention_mask = attention_mask.unsqueeze(-1)
            return ((emb * attention_mask).prod(dim=1) / attention_mask.sum(dim=1)) / length

    def median_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # (b, L, d) -> (b, d)
        if attention_mask is None:
            return emb.median(dim=1).values
        else:
            attention_mask = attention_mask.unsqueeze(-1)
            return (emb * attention_mask).median(dim=1).values
    
    def std_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # (b, L, d) -> (b, d)
        if attention_mask is None:
            return emb.std(dim=1)
        else:
            attention_mask = attention_mask.unsqueeze(-1)
            return (emb * attention_mask).std(dim=1)
    
    def var_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # (b, L, d) -> (b, d)
        if attention_mask is None:
            return emb.var(dim=1)
        else:
            attention_mask = attention_mask.unsqueeze(-1)
            return (emb * attention_mask).var(dim=1)

    def cls_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # (b, L, d) -> (b, d)
        return emb[:, 0, :]

    def __call__(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # [mean, max]
        final_emb = []
        for pooling_type in self.pooling_types:
            final_emb.append(self.pooling_options[pooling_type](emb, attention_mask)) # (b, d)
        return torch.cat(final_emb, dim=-1) # (b, n_pooling_types * d)


class ProteinDataset(TorchDataset):
    """Simple dataset for protein sequences."""
    def __init__(self, sequences: list[str]):
        self.sequences = sequences

    def __len__(self) -> int:
        return len(self.sequences)

    def __getitem__(self, idx: int) -> str:
        return self.sequences[idx]


def build_collator(tokenizer) -> Callable[[list[str]], tuple[torch.Tensor, torch.Tensor]]:
    def _collate_fn(sequences: list[str]) -> tuple[torch.Tensor, torch.Tensor]:
        """Collate function for batching sequences."""
        return tokenizer(sequences, return_tensors="pt", padding='longest', pad_to_multiple_of=8)
    return _collate_fn


class EmbeddingMixin:
    def _embed(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
        raise NotImplementedError

    @property
    def device(self) -> torch.device:
        """Get the device of the model."""
        return next(self.parameters()).device

    def _read_sequences_from_db(self, db_path: str) -> set[str]:
        """Read sequences from SQLite database."""
        import sqlite3
        sequences = []
        with sqlite3.connect(db_path) as conn:
            c = conn.cursor()
            c.execute("SELECT sequence FROM embeddings")
            while True:
                row = c.fetchone()
                if row is None:
                    break
                sequences.append(row[0])
        return set(sequences)

    def embed_dataset(

        self,

        sequences: List[str],

        tokenizer: PreTrainedTokenizerBase,

        batch_size: int = 2,

        max_len: int = 512,

        full_embeddings: bool = False,

        embed_dtype: torch.dtype = torch.float32,

        pooling_types: List[str] = ['mean'],

        num_workers: int = 0,

        sql: bool = False,

        save: bool = True,

        sql_db_path: str = 'embeddings.db',

        save_path: str = 'embeddings.pth',

    ) -> Optional[dict[str, torch.Tensor]]:
        """Embed a dataset of protein sequences.

        

        Args:

            sequences: List of protein sequences

            batch_size: Batch size for processing

            max_len: Maximum sequence length

            full_embeddings: Whether to return full residue-wise (True) embeddings or pooled (False)

            pooling_type: Type of pooling ('mean' or 'cls')

            num_workers: Number of workers for data loading, 0 for the main process

            sql: Whether to store embeddings in SQLite database - will be stored in float32

            sql_db_path: Path to SQLite database

            

        Returns:

            Dictionary mapping sequences to embeddings, or None if sql=True



        Note:

            - If sql=True, embeddings can only be stored in float32

            - sql is ideal if you need to stream a very large dataset for training in real-time

            - save=True is ideal if you can store the entire embedding dictionary in RAM

            - sql will be used if it is True and save is True or False

            - If your sql database or .pth file is already present, they will be scanned first for already embedded sequences

            - Sequences will be truncated to max_len and sorted by length in descending order for faster processing



        Example:

            >>> embedder = EmbeddingMixin()

            >>> embedding_dict = embedder.embed_dataset(

                sequences=[

                    'MALWMRLLPLLALLALWGPDPAAA', ... # list of protein sequences

                ],

                batch_size=2, # adjust for your GPU memory

                max_len=512, # adjust for your needs

                full_embeddings=False, # if True, no pooling is performed

                embed_dtype=torch.float32, # cast to what dtype you want

                pooling_type=['mean', 'cls'], # more than one pooling type will be concatenated together

                num_workers=0, # if you have many cpu cores, we find that num_workers = 4 is fast for large datasets

                sql=False, # if True, embeddings will be stored in SQLite database

                sql_db_path='embeddings.db',

                save=True, # if True, embeddings will be saved as a .pth file

                save_path='embeddings.pth',

            )

            >>> # embedding_dict is a dictionary mapping sequences to their embeddings as tensors for .pth or numpy arrays for sql

        """
        sequences = list(set([seq[:max_len] for seq in sequences]))
        sequences = sorted(sequences, key=len, reverse=True)
        collate_fn = build_collator(tokenizer)
        device = self.device
        pooler = Pooler(pooling_types) if not full_embeddings else None

        def get_embeddings(residue_embeddings: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
            if full_embeddings or residue_embeddings.ndim == 2: # if already pooled or want residue-wise embeddings
                return residue_embeddings
            else:
                return pooler(residue_embeddings, attention_mask)

        if sql:
            import sqlite3
            conn = sqlite3.connect(sql_db_path)
            c = conn.cursor()
            c.execute('CREATE TABLE IF NOT EXISTS embeddings (sequence text PRIMARY KEY, embedding blob)')
            already_embedded = self._read_sequences_from_db(sql_db_path)
            to_embed = [seq for seq in sequences if seq not in already_embedded]
            print(f"Found {len(already_embedded)} already embedded sequences in {sql_db_path}")
            print(f"Embedding {len(to_embed)} new sequences")
            if len(to_embed) > 0:
                dataset = ProteinDataset(to_embed)
                dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, collate_fn=collate_fn, shuffle=False)
                with torch.no_grad():
                    for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), desc='Embedding batches'):
                        seqs = to_embed[i * batch_size:(i + 1) * batch_size]
                        input_ids, attention_mask = batch['input_ids'].to(device), batch['attention_mask'].to(device)
                        residue_embeddings = self._embed(input_ids, attention_mask).float() # sql requires float32
                        embeddings = get_embeddings(residue_embeddings, attention_mask).cpu()
                        for seq, emb, mask in zip(seqs, embeddings, attention_mask):
                            if full_embeddings:
                                emb = emb[mask.bool()]
                            c.execute("INSERT OR REPLACE INTO embeddings VALUES (?, ?)", 
                                    (seq, emb.cpu().numpy().tobytes()))
                        
                        if (i + 1) % 100 == 0:
                            conn.commit()
            
                conn.commit()
            conn.close()
            return None

        embeddings_dict = {}
        if os.path.exists(save_path):
            embeddings_dict = torch.load(save_path, map_location='cpu', weights_only=True)
            to_embed = [seq for seq in sequences if seq not in embeddings_dict]
            print(f"Found {len(embeddings_dict)} already embedded sequences in {save_path}")
            print(f"Embedding {len(to_embed)} new sequences")
        else:
            to_embed = sequences
            print(f"Embedding {len(to_embed)} new sequences")

        if len(to_embed) > 0:
            dataset = ProteinDataset(to_embed)
            dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, collate_fn=collate_fn, shuffle=False)
            with torch.no_grad():
                for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), desc='Embedding batches'):
                    seqs = to_embed[i * batch_size:(i + 1) * batch_size]
                    input_ids, attention_mask = batch['input_ids'].to(device), batch['attention_mask'].to(device)
                    residue_embeddings = self._embed(input_ids, attention_mask)
                    embeddings = get_embeddings(residue_embeddings, attention_mask).to(embed_dtype).cpu()
                    for seq, emb in zip(seqs, embeddings):
                        embeddings_dict[seq] = emb

        if save:
            torch.save(embeddings_dict, save_path)

        return embeddings_dict


class FastEsmPreTrainedModel(PreTrainedModel):
    """

    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained

    models.

    """
    config_class = FastEsmConfig
    base_model_prefix = "fastesm"
    supports_gradient_checkpointing = True
    tokenizer = EsmTokenizer.from_pretrained("facebook/esm2_t6_8M_UR50D")
    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            if module.bias is not None:
                module.bias.data.zero_()
            module.weight.data.fill_(1.0)

    def get_input_embeddings(self) -> nn.Module:
        try:
            return self.embeddings.word_embeddings
        except AttributeError:
            return self.esm.embeddings.word_embeddings


class FAST_ESM_ENCODER(FastEsmPreTrainedModel, EmbeddingMixin):
    def __init__(self, config, add_pooling_layer: Optional[bool] = True, **kwargs):
        FastEsmPreTrainedModel.__init__(self, config, **kwargs)
        self.config = config
        self.embeddings = EsmEmbeddings(config)
        self.encoder = EsmEncoder(config)
        self.contact_head = EsmContactPredictionHead(
            in_features=config.num_hidden_layers * config.num_attention_heads, bias=True
        )
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, value):
        self.embeddings.word_embeddings = value

    def _embed(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
        token_embedding_output = self.embeddings(input_ids, attention_mask=attention_mask)
        batch_size, seq_length = input_ids.shape
        if attention_mask is not None:
            extended_attention_mask = attention_mask[:, None, None, :].expand(
                batch_size, 1, seq_length, seq_length
            ).bool()
        else:
            extended_attention_mask = None
        encoder_outputs = self.encoder(
            token_embedding_output,
            attention_mask=extended_attention_mask,
            output_hidden_states=False,
            output_attentions=False,
        )
        return encoder_outputs.last_hidden_state

    def predict_contacts(self, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
        attns = self(input_ids, attention_mask=attention_mask, output_attentions=True).attentions
        attns = torch.stack(attns, dim=1)
        attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(3)
        attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(4)
        return self.contact_head(input_ids, attns)

    def forward(

        self,

        input_ids: Optional[torch.Tensor] = None,

        attention_mask: Optional[torch.Tensor] = None,

        position_ids: Optional[torch.Tensor] = None,

        inputs_embeds: Optional[torch.Tensor] = None,

        output_attentions: Optional[bool] = None,

        output_hidden_states: Optional[bool] = None,

        return_dict: Optional[bool] = None, # to play nice with HF adjacent packages

    ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
        """Forward pass for base model.

        

        Args:

            input_ids: Input token IDs

            attention_mask: Optional attention mask

            position_ids: Optional position IDs

            inputs_embeds: Optional input embeddings

            output_hidden_states: Whether to return all hidden states

            output_attentions: Whether to return attention weights

            

        Returns:

            Model outputs including hidden states and optionally attention weights

        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        batch_size, seq_length = input_shape
        token_embedding_output = self.embeddings(
            input_ids=input_ids,
            position_ids=position_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
        )

        if attention_mask is not None:
            extended_attention_mask = attention_mask[:, None, None, :].expand(
                batch_size, 1, seq_length, seq_length
            ).bool()
        else:
            extended_attention_mask = None

        encoder_outputs = self.encoder(
            token_embedding_output,
            attention_mask=extended_attention_mask,
            output_hidden_states=output_hidden_states,
            output_attentions=output_attentions,
        )
        sequence_output = encoder_outputs.last_hidden_state

        return BaseModelOutputWithPoolingAndCrossAttentions(
            last_hidden_state=sequence_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )


class FastEsmModel(FastEsmPreTrainedModel, EmbeddingMixin):
    def __init__(self, config, add_pooling_layer: Optional[bool] = True, **kwargs):
        FastEsmPreTrainedModel.__init__(self, config, **kwargs)
        self.config = config
        self.esm = FAST_ESM_ENCODER(config)
        self.pooler = EsmPooler(config) if add_pooling_layer else None
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, value):
        self.embeddings.word_embeddings = value

    def _embed(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
        return self.esm._embed(input_ids, attention_mask)

    def predict_contacts(self, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
        return self.esm.predict_contacts(input_ids, attention_mask=attention_mask)

    def forward(

        self,

        input_ids: Optional[torch.Tensor] = None,

        attention_mask: Optional[torch.Tensor] = None,

        position_ids: Optional[torch.Tensor] = None,

        inputs_embeds: Optional[torch.Tensor] = None,

        output_attentions: Optional[bool] = None,

        output_hidden_states: Optional[bool] = None,

        return_dict: Optional[bool] = None, # to play nice with HF adjacent packages

    ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
        """Forward pass for base model.

        

        Args:

            input_ids: Input token IDs

            attention_mask: Optional attention mask

            position_ids: Optional position IDs

            inputs_embeds: Optional input embeddings

            output_hidden_states: Whether to return all hidden states

            output_attentions: Whether to return attention weights

            

        Returns:

            Model outputs including hidden states and optionally attention weights

        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        outputs = self.esm(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            output_hidden_states=output_hidden_states,
            output_attentions=output_attentions,
        )
        sequence_output = outputs.last_hidden_state
        pooled_output = self.pooler(sequence_output) if self.pooler is not None else None

        return BaseModelOutputWithPoolingAndCrossAttentions(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


class FastEsmForMaskedLM(FastEsmPreTrainedModel, EmbeddingMixin):
    _tied_weights_keys = ["lm_head.decoder.weight"]

    def __init__(self, config, **kwargs):
        FastEsmPreTrainedModel.__init__(self, config, **kwargs)
        self.esm = FAST_ESM_ENCODER(config, add_pooling_layer=False)
        self.lm_head = EsmLMHead(config)
        self.loss_fct = nn.CrossEntropyLoss()
        self.init_weights()

    def get_output_embeddings(self):
        return self.lm_head.decoder

    def set_output_embeddings(self, new_embeddings):
        self.lm_head.decoder = new_embeddings

    def _embed(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
        return self.esm._embed(input_ids, attention_mask)

    def predict_contacts(self, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
        return self.esm.predict_contacts(input_ids, attention_mask=attention_mask)

    def forward(

        self,

        input_ids: Optional[torch.Tensor] = None,

        attention_mask: Optional[torch.Tensor] = None,

        position_ids: Optional[torch.Tensor] = None,

        inputs_embeds: Optional[torch.Tensor] = None,

        labels: Optional[torch.Tensor] = None,

        output_attentions: Optional[bool] = None,

        output_hidden_states: Optional[bool] = None,

        return_dict: Optional[bool] = None, # to play nice with HF adjacent packages

    ) -> Union[Tuple, EsmMaskedLMOutput]:
        outputs = self.esm(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            output_hidden_states=output_hidden_states,
            output_attentions=output_attentions,
        )
        sequence_output = outputs.last_hidden_state
        prediction_scores = self.lm_head(sequence_output)

        loss = None
        if labels is not None:
            labels = labels.to(prediction_scores.device)
            loss = self.loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))

        return EsmMaskedLMOutput(
            loss=loss,
            logits=prediction_scores,
            last_hidden_state=sequence_output,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


class FastEsmForSequenceClassification(FastEsmPreTrainedModel, EmbeddingMixin):
    def __init__(self, config, **kwargs):
        FastEsmPreTrainedModel.__init__(self, config, **kwargs)
        self.num_labels = config.num_labels
        self.config = config
        self.esm = FAST_ESM_ENCODER(config, add_pooling_layer=False)
        self.classifier = EsmClassificationHead(config)
        self.mse = nn.MSELoss()
        self.ce = nn.CrossEntropyLoss()
        self.bce = nn.BCEWithLogitsLoss()
        self.init_weights()

    def _embed(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
        return self.esm._embed(input_ids, attention_mask)

    def predict_contacts(self, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
        return self.esm.predict_contacts(input_ids, attention_mask=attention_mask)

    def forward(

        self,

        input_ids: Optional[torch.Tensor] = None,

        attention_mask: Optional[torch.Tensor] = None,

        position_ids: Optional[torch.Tensor] = None,

        inputs_embeds: Optional[torch.Tensor] = None,

        labels: Optional[torch.Tensor] = None,

        output_attentions: Optional[bool] = None,

        output_hidden_states: Optional[bool] = None,

        return_dict: Optional[bool] = None

    ) -> Union[Tuple, SequenceClassifierOutput]:
        outputs = self.esm(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )
        sequence_output = outputs.last_hidden_state
        logits = self.classifier(sequence_output)

        loss = None
        if labels is not None:
            labels = labels.to(logits.device)
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                if self.num_labels == 1:
                    loss = self.mse(logits.squeeze(), labels.squeeze())
                else:
                    loss = self.mse(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss = self.ce(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss = self.bce(logits, labels)

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


class FastEsmForTokenClassification(FastEsmPreTrainedModel, EmbeddingMixin):
    def __init__(self, config, **kwargs):
        FastEsmPreTrainedModel.__init__(self, config, **kwargs)
        self.num_labels = config.num_labels
        self.esm = FAST_ESM_ENCODER(config, add_pooling_layer=False)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)
        self.loss_fct = nn.CrossEntropyLoss()
        self.init_weights()

    def _embed(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
        return self.esm._embed(input_ids, attention_mask)

    def predict_contacts(self, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
        return self.esm.predict_contacts(input_ids, attention_mask=attention_mask)

    def forward(

        self,

        input_ids: Optional[torch.Tensor] = None,

        attention_mask: Optional[torch.Tensor] = None,

        position_ids: Optional[torch.Tensor] = None,

        inputs_embeds: Optional[torch.Tensor] = None,

        labels: Optional[torch.Tensor] = None,

        output_attentions: Optional[bool] = None,

        output_hidden_states: Optional[bool] = None,

        return_dict: Optional[bool] = None

    ) -> Union[Tuple, TokenClassifierOutput]:
        outputs = self.esm(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )
        sequence_output = outputs.last_hidden_state
        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)

        loss = None
        if labels is not None:
            labels = labels.to(logits.device)
            loss = self.loss_fct(logits.view(-1, self.num_labels), labels.view(-1))

        return TokenClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


if __name__ == "__main__":
    """

    Test the hidden state differences between the FastEsmModel and the HF EsmModel.

    In full precision, the differences are very very small, but nonzero due to floating point issues with F.scaled_dot_product_attention.

    In Pytorch 2.5+ (and linux kernel), this implementation is very fast and uses less memory than the HF implementation.

    """
    import random
    from transformers import EsmForMaskedLM as TransformersEsmModel, EsmTokenizer

    model_paths = [
        "facebook/esm2_t6_8M_UR50D",
        "facebook/esm2_t12_35M_UR50D",
        #"facebook/esm2_t30_150M_UR50D",
        #"facebook/esm2_t33_650M_UR50D",
    ]
    canonical_amino_acids = "ACDEFGHIKLMNPQRSTVWY"
    length = 64
    seq_count = 100
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    tolerances = [1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8]

    def generate_random_sequence(length: int) -> str:
        return 'M' + "".join(random.choices(canonical_amino_acids, k=length))

    print("Percentage of hidden states that are within the tolerance:")
    for model_path in model_paths:
        print(f"Testing {model_path}...")
        tokenizer = EsmTokenizer.from_pretrained(model_path)
        config = FastEsmConfig.from_pretrained(model_path)
        fast_model = FastEsmForMaskedLM(config).from_pretrained(model_path).to(device)
        print('fast model')
        print(fast_model)
        model = TransformersEsmModel.from_pretrained(model_path, token_dropout=False).to(device)
        print('transformers model')
        print(model)

        counts = [0] * len(tolerances)
        for _ in range(seq_count):
            example_seq = generate_random_sequence(length)
            fast_tokens = tokenizer(example_seq, return_tensors="pt").input_ids.to(device)
            fast_output = fast_model(fast_tokens, output_hidden_states=True).hidden_states[-1].detach().cpu()

            model_tokens = tokenizer(example_seq, return_tensors="pt").input_ids.to(device)
            model_output = model(model_tokens, output_hidden_states=True).hidden_states[-1].detach().cpu()

            for i, atol in enumerate(tolerances):
                if torch.allclose(fast_output, model_output, atol=atol):
                    counts[i] += 1

        print(f"{model_path}:")
        for i, atol in enumerate(tolerances):
            print(f"    tolerance={atol}: {counts[i] / seq_count * 100}%")
    
        model.cpu()
        fast_model.cpu()
        del model
        del fast_model
        torch.cuda.empty_cache()