File size: 51,082 Bytes
888b364 9966ab1 888b364 9966ab1 888b364 44cde8c 9966ab1 888b364 44cde8c 888b364 44cde8c 9966ab1 44cde8c 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 7ce555f 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 bf130ec 9966ab1 1710ca2 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 44cde8c 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 1710ca2 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 44cde8c 888b364 56fe2cc 888b364 56fe2cc 888b364 56fe2cc 888b364 56fe2cc 888b364 9966ab1 888b364 1710ca2 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 44cde8c 888b364 44cde8c 888b364 3e5d77a 888b364 9966ab1 1710ca2 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9f690c3 888b364 9966ab1 1710ca2 888b364 9966ab1 888b364 9966ab1 888b364 9966ab1 888b364 9f690c3 888b364 9966ab1 888b364 9966ab1 888b364 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 |
import torch
import torch.nn as nn
import os
from torch.nn import functional as F
from torch.utils.data import Dataset as TorchDataset
from torch.utils.data import DataLoader as DataLoader
from typing import Optional, Tuple, Union, Callable, List, Dict, Any
from einops import rearrange
from dataclasses import dataclass
from transformers import PreTrainedModel, PretrainedConfig, EsmTokenizer, PreTrainedTokenizerBase
from transformers.modeling_outputs import (
ModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
BaseModelOutputWithPoolingAndCrossAttentions,
SequenceClassifierOutput,
TokenClassifierOutput
)
from transformers.models.esm.modeling_esm import (
EsmIntermediate,
EsmOutput,
EsmPooler,
EsmLMHead,
EsmSelfOutput,
EsmClassificationHead,
)
from tqdm.auto import tqdm
@dataclass
class EsmMaskedLMOutput(ModelOutput):
loss: Optional[torch.Tensor] = None
logits: Optional[torch.Tensor] = None
last_hidden_state: Optional[torch.Tensor] = None
hidden_states: Optional[Tuple[torch.Tensor, ...]] = None
attentions: Optional[Tuple[torch.Tensor, ...]] = None
class FastEsmConfig(PretrainedConfig):
model_type = "fast_esm"
def __init__(
self,
vocab_size: int = None,
mask_token_id: int = None,
pad_token_id: int = None,
hidden_size: int = 768,
num_hidden_layers: int = 12,
num_attention_heads: int = 12,
intermediate_size: int = 3072,
hidden_dropout_prob: float = 0.1,
attention_probs_dropout_prob: float = 0.1,
max_position_embeddings: int = 1026,
initializer_range: float = 0.02,
layer_norm_eps: float = 1e-12,
position_embedding_type: str = "absolute",
emb_layer_norm_before: bool = None,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, mask_token_id=mask_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.emb_layer_norm_before = emb_layer_norm_before
def to_dict(self) -> Dict[str, Any]:
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionar y of all the attributes that make up this configuration instance,
"""
output = super().to_dict()
return output
def rotate_half(x: torch.Tensor) -> torch.Tensor:
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
cos = cos[:, :, : x.shape[-2], :]
sin = sin[:, :, : x.shape[-2], :]
return (x * cos) + (rotate_half(x) * sin)
def symmetrize(x: torch.Tensor) -> torch.Tensor:
"Make layer symmetric in final two dimensions, used for contact prediction."
return x + x.transpose(-1, -2)
def average_product_correct(x: torch.Tensor) -> torch.Tensor:
"Perform average product correct, used for contact prediction."
a1 = x.sum(-1, keepdims=True)
a2 = x.sum(-2, keepdims=True)
a12 = x.sum((-1, -2), keepdims=True)
avg = a1 * a2
avg.div_(a12) # in-place to reduce memory
normalized = x - avg
return normalized
class EsmContactPredictionHead(nn.Module):
"""Performs symmetrization, apc, and computes a logistic regression on the output features"""
def __init__(
self,
in_features: int,
bias: bool = True,
eos_idx: int = 2,
):
super().__init__()
self.in_features = in_features
self.eos_idx = eos_idx
self.regression = nn.Linear(in_features, 1, bias=bias)
self.activation = nn.Sigmoid()
def forward(self, input_ids: torch.Tensor, attentions: torch.Tensor) -> torch.Tensor:
# remove eos token attentions
eos_mask = input_ids.ne(self.eos_idx).to(attentions)
eos_mask = eos_mask.unsqueeze(1) * eos_mask.unsqueeze(2)
attentions = attentions * eos_mask[:, None, None, :, :]
attentions = attentions[..., :-1, :-1]
# remove cls token attentions
attentions = attentions[..., 1:, 1:]
batch_size, layers, heads, seqlen, _ = attentions.size()
attentions = attentions.view(batch_size, layers * heads, seqlen, seqlen)
# features: batch x channels x tokens x tokens (symmetric)
attentions = attentions.to(
self.regression.weight.device
) # attentions always float32, may need to convert to float16
attentions = average_product_correct(symmetrize(attentions))
attentions = attentions.permute(0, 2, 3, 1)
return self.activation(self.regression(attentions).squeeze(3))
class RotaryEmbedding(torch.nn.Module):
"""
Rotary position embeddings based on those in
[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation
matrices which depend on their relative positions.
"""
def __init__(self, dim: int):
super().__init__()
# Generate and save the inverse frequency buffer (non trainable)
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim))
inv_freq = inv_freq
self.register_buffer("inv_freq", inv_freq)
self._seq_len_cached = None
self._cos_cached = None
self._sin_cached = None
def _update_cos_sin_tables(self, x: torch.Tensor, seq_dimension: int = 2) -> Tuple[torch.Tensor, torch.Tensor]:
seq_len = x.shape[seq_dimension]
# Reset the tables if the sequence length has changed,
# or if we're on a new device (possibly due to tracing for instance)
if seq_len != self._seq_len_cached or self._cos_cached.device != x.device:
self._seq_len_cached = seq_len
t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(self.inv_freq)
freqs = torch.outer(t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
self._cos_cached = emb.cos()[None, None, :, :].to(x.dtype)
self._sin_cached = emb.sin()[None, None, :, :].to(x.dtype)
return self._cos_cached, self._sin_cached
def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
self._cos_cached, self._sin_cached = self._update_cos_sin_tables(k, seq_dimension=-2)
return (
apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached),
apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached),
)
class EsmEmbeddings(nn.Module):
"""
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
"""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
if config.emb_layer_norm_before:
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
else:
self.layer_norm = None
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
past_key_values_length: Optional[int] = 0,
):
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
embeddings = inputs_embeds
if self.layer_norm is not None:
embeddings = self.layer_norm(embeddings)
if attention_mask is not None:
embeddings = (embeddings * attention_mask.unsqueeze(-1)).to(embeddings.dtype)
return embeddings
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
"""
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
Args:
inputs_embeds: torch.Tensor
Returns: torch.Tensor
"""
input_shape = inputs_embeds.size()[:-1]
sequence_length = input_shape[1]
position_ids = torch.arange(
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
)
return position_ids.unsqueeze(0).expand(input_shape)
class EsmSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type: Optional[str] = None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.scale = self.attention_head_size**-0.5
self.dropout_prob = config.attention_probs_dropout_prob
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
self.rotary_embeddings = None
if self.position_embedding_type == "rotary":
self.rotary_embeddings = RotaryEmbedding(dim=self.attention_head_size)
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
return rearrange(x, 'b s (h d) -> b h s d', h=self.num_attention_heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""Forward pass for self attention.
Args:
hidden_states: Input tensor
attention_mask: Optional attention mask
output_attentions: Whether to return attention weights
Returns:
Output tensor and optionally attention weights
"""
query_layer = self.transpose_for_scores(self.query(hidden_states)) * self.scale
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
if self.position_embedding_type == "rotary":
query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer)
if output_attentions:
# Manual attention computation to get attention weights
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
attention_probs = F.softmax(attention_scores, dim=-1)
if self.dropout_prob > 0:
attention_probs = F.dropout(attention_probs, p=self.dropout_prob, training=self.training)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = rearrange(context_layer, 'b h s d -> b s (h d)')
return context_layer, attention_probs
else:
context_layer = F.scaled_dot_product_attention(
query_layer,
key_layer,
value_layer,
attn_mask=attention_mask,
dropout_p=self.dropout_prob,
scale=1.0
)
context_layer = rearrange(context_layer, 'b h s d -> b s (h d)')
return context_layer
class EsmAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.self = EsmSelfAttention(config)
self.output = EsmSelfOutput(config)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""Forward pass for attention layer.
Args:
hidden_states: Input tensor
attention_mask: Optional attention mask
output_attentions: Whether to return attention weights
Returns:
Output tensor and optionally attention weights
"""
hidden_states_ln = self.LayerNorm(hidden_states)
self_outputs = self.self(
hidden_states_ln,
attention_mask,
output_attentions,
)
if output_attentions:
attention_output, attention_weights = self_outputs
attention_output = self.output(attention_output, hidden_states)
return attention_output, attention_weights
else:
attention_output = self_outputs
return self.output(attention_output, hidden_states)
class EsmLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = EsmAttention(config)
self.intermediate = EsmIntermediate(config)
self.output = EsmOutput(config)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""Forward pass for transformer layer.
Args:
hidden_states: Input tensor
attention_mask: Optional attention mask
output_attentions: Whether to return attention weights
Returns:
Output tensor and optionally attention weights
"""
attention_outputs = self.attention(
hidden_states,
attention_mask,
output_attentions,
)
if output_attentions:
attention_output, attention_weights = attention_outputs
else:
attention_output = attention_outputs
attention_weights = None
layer_output = self.feed_forward_chunk(attention_output)
if output_attentions:
return layer_output, attention_weights
return layer_output
def feed_forward_chunk(self, attention_output):
attention_output_ln = self.LayerNorm(attention_output)
intermediate_output = self.intermediate(attention_output_ln)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class EsmEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([EsmLayer(config) for _ in range(config.num_hidden_layers)])
self.emb_layer_norm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = False,
output_attentions: Optional[bool] = False,
) -> BaseModelOutputWithPastAndCrossAttentions:
"""Forward pass for transformer encoder.
Args:
hidden_states: Input tensor
attention_mask: Optional attention mask
output_hidden_states: Whether to return all hidden states
output_attentions: Whether to return attention weights
Returns:
BaseModelOutputWithPastAndCrossAttentions containing model outputs
"""
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for layer_module in self.layer:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
output_attentions,
)
if output_attentions:
hidden_states, attention_weights = layer_outputs
all_attentions = all_attentions + (attention_weights,)
else:
hidden_states = layer_outputs
if self.emb_layer_norm_after:
hidden_states = self.emb_layer_norm_after(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
)
### Support for embedding datasets with low code
class Pooler:
def __init__(self, pooling_types: List[str]):
self.pooling_types = pooling_types
self.pooling_options = {
'mean': self.mean_pooling,
'max': self.max_pooling,
'min': self.min_pooling,
'norm': self.norm_pooling,
'prod': self.prod_pooling,
'median': self.median_pooling,
'std': self.std_pooling,
'var': self.var_pooling,
'cls': self.cls_pooling,
}
def mean_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # (b, L, d) -> (b, d)
if attention_mask is None:
return emb.mean(dim=1)
else:
attention_mask = attention_mask.unsqueeze(-1)
return (emb * attention_mask).sum(dim=1) / attention_mask.sum(dim=1)
def max_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # (b, L, d) -> (b, d)
if attention_mask is None:
return emb.max(dim=1).values
else:
attention_mask = attention_mask.unsqueeze(-1)
return (emb * attention_mask).max(dim=1).values
def min_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # (b, L, d) -> (b, d)
if attention_mask is None:
return emb.min(dim=1).values
else:
attention_mask = attention_mask.unsqueeze(-1)
return (emb * attention_mask).min(dim=1).values
def norm_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # (b, L, d) -> (b, d)
if attention_mask is None:
return emb.norm(dim=1, p=2)
else:
attention_mask = attention_mask.unsqueeze(-1)
return (emb * attention_mask).norm(dim=1, p=2)
def prod_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # (b, L, d) -> (b, d)
length = emb.shape[1]
if attention_mask is None:
return emb.prod(dim=1) / length
else:
attention_mask = attention_mask.unsqueeze(-1)
return ((emb * attention_mask).prod(dim=1) / attention_mask.sum(dim=1)) / length
def median_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # (b, L, d) -> (b, d)
if attention_mask is None:
return emb.median(dim=1).values
else:
attention_mask = attention_mask.unsqueeze(-1)
return (emb * attention_mask).median(dim=1).values
def std_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # (b, L, d) -> (b, d)
if attention_mask is None:
return emb.std(dim=1)
else:
attention_mask = attention_mask.unsqueeze(-1)
return (emb * attention_mask).std(dim=1)
def var_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # (b, L, d) -> (b, d)
if attention_mask is None:
return emb.var(dim=1)
else:
attention_mask = attention_mask.unsqueeze(-1)
return (emb * attention_mask).var(dim=1)
def cls_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # (b, L, d) -> (b, d)
return emb[:, 0, :]
def __call__(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # [mean, max]
final_emb = []
for pooling_type in self.pooling_types:
final_emb.append(self.pooling_options[pooling_type](emb, attention_mask)) # (b, d)
return torch.cat(final_emb, dim=-1) # (b, n_pooling_types * d)
class ProteinDataset(TorchDataset):
"""Simple dataset for protein sequences."""
def __init__(self, sequences: list[str]):
self.sequences = sequences
def __len__(self) -> int:
return len(self.sequences)
def __getitem__(self, idx: int) -> str:
return self.sequences[idx]
def build_collator(tokenizer) -> Callable[[list[str]], tuple[torch.Tensor, torch.Tensor]]:
def _collate_fn(sequences: list[str]) -> tuple[torch.Tensor, torch.Tensor]:
"""Collate function for batching sequences."""
return tokenizer(sequences, return_tensors="pt", padding='longest', pad_to_multiple_of=8)
return _collate_fn
class EmbeddingMixin:
def _embed(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
raise NotImplementedError
@property
def device(self) -> torch.device:
"""Get the device of the model."""
return next(self.parameters()).device
def _read_sequences_from_db(self, db_path: str) -> set[str]:
"""Read sequences from SQLite database."""
import sqlite3
sequences = []
with sqlite3.connect(db_path) as conn:
c = conn.cursor()
c.execute("SELECT sequence FROM embeddings")
while True:
row = c.fetchone()
if row is None:
break
sequences.append(row[0])
return set(sequences)
def embed_dataset(
self,
sequences: List[str],
tokenizer: PreTrainedTokenizerBase,
batch_size: int = 2,
max_len: int = 512,
full_embeddings: bool = False,
embed_dtype: torch.dtype = torch.float32,
pooling_types: List[str] = ['mean'],
num_workers: int = 0,
sql: bool = False,
save: bool = True,
sql_db_path: str = 'embeddings.db',
save_path: str = 'embeddings.pth',
) -> Optional[dict[str, torch.Tensor]]:
"""Embed a dataset of protein sequences.
Args:
sequences: List of protein sequences
batch_size: Batch size for processing
max_len: Maximum sequence length
full_embeddings: Whether to return full residue-wise (True) embeddings or pooled (False)
pooling_type: Type of pooling ('mean' or 'cls')
num_workers: Number of workers for data loading, 0 for the main process
sql: Whether to store embeddings in SQLite database - will be stored in float32
sql_db_path: Path to SQLite database
Returns:
Dictionary mapping sequences to embeddings, or None if sql=True
Note:
- If sql=True, embeddings can only be stored in float32
- sql is ideal if you need to stream a very large dataset for training in real-time
- save=True is ideal if you can store the entire embedding dictionary in RAM
- sql will be used if it is True and save is True or False
- If your sql database or .pth file is already present, they will be scanned first for already embedded sequences
- Sequences will be truncated to max_len and sorted by length in descending order for faster processing
Example:
>>> embedder = EmbeddingMixin()
>>> embedding_dict = embedder.embed_dataset(
sequences=[
'MALWMRLLPLLALLALWGPDPAAA', ... # list of protein sequences
],
batch_size=2, # adjust for your GPU memory
max_len=512, # adjust for your needs
full_embeddings=False, # if True, no pooling is performed
embed_dtype=torch.float32, # cast to what dtype you want
pooling_type=['mean', 'cls'], # more than one pooling type will be concatenated together
num_workers=0, # if you have many cpu cores, we find that num_workers = 4 is fast for large datasets
sql=False, # if True, embeddings will be stored in SQLite database
sql_db_path='embeddings.db',
save=True, # if True, embeddings will be saved as a .pth file
save_path='embeddings.pth',
)
>>> # embedding_dict is a dictionary mapping sequences to their embeddings as tensors for .pth or numpy arrays for sql
"""
sequences = list(set([seq[:max_len] for seq in sequences]))
sequences = sorted(sequences, key=len, reverse=True)
collate_fn = build_collator(tokenizer)
device = self.device
pooler = Pooler(pooling_types) if not full_embeddings else None
def get_embeddings(residue_embeddings: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
if full_embeddings or residue_embeddings.ndim == 2: # if already pooled or want residue-wise embeddings
return residue_embeddings
else:
return pooler(residue_embeddings, attention_mask)
if sql:
import sqlite3
conn = sqlite3.connect(sql_db_path)
c = conn.cursor()
c.execute('CREATE TABLE IF NOT EXISTS embeddings (sequence text PRIMARY KEY, embedding blob)')
already_embedded = self._read_sequences_from_db(sql_db_path)
to_embed = [seq for seq in sequences if seq not in already_embedded]
print(f"Found {len(already_embedded)} already embedded sequences in {sql_db_path}")
print(f"Embedding {len(to_embed)} new sequences")
if len(to_embed) > 0:
dataset = ProteinDataset(to_embed)
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, collate_fn=collate_fn, shuffle=False)
with torch.no_grad():
for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), desc='Embedding batches'):
seqs = to_embed[i * batch_size:(i + 1) * batch_size]
input_ids, attention_mask = batch['input_ids'].to(device), batch['attention_mask'].to(device)
residue_embeddings = self._embed(input_ids, attention_mask).float() # sql requires float32
embeddings = get_embeddings(residue_embeddings, attention_mask).cpu()
for seq, emb, mask in zip(seqs, embeddings, attention_mask):
if full_embeddings:
emb = emb[mask.bool()]
c.execute("INSERT OR REPLACE INTO embeddings VALUES (?, ?)",
(seq, emb.cpu().numpy().tobytes()))
if (i + 1) % 100 == 0:
conn.commit()
conn.commit()
conn.close()
return None
embeddings_dict = {}
if os.path.exists(save_path):
embeddings_dict = torch.load(save_path, map_location='cpu', weights_only=True)
to_embed = [seq for seq in sequences if seq not in embeddings_dict]
print(f"Found {len(embeddings_dict)} already embedded sequences in {save_path}")
print(f"Embedding {len(to_embed)} new sequences")
else:
to_embed = sequences
print(f"Embedding {len(to_embed)} new sequences")
if len(to_embed) > 0:
dataset = ProteinDataset(to_embed)
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, collate_fn=collate_fn, shuffle=False)
with torch.no_grad():
for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), desc='Embedding batches'):
seqs = to_embed[i * batch_size:(i + 1) * batch_size]
input_ids, attention_mask = batch['input_ids'].to(device), batch['attention_mask'].to(device)
residue_embeddings = self._embed(input_ids, attention_mask)
embeddings = get_embeddings(residue_embeddings, attention_mask).to(embed_dtype).cpu()
for seq, emb in zip(seqs, embeddings):
embeddings_dict[seq] = emb
if save:
torch.save(embeddings_dict, save_path)
return embeddings_dict
class FastEsmPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = FastEsmConfig
base_model_prefix = "fastesm"
supports_gradient_checkpointing = True
tokenizer = EsmTokenizer.from_pretrained("facebook/esm2_t6_8M_UR50D")
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
if module.bias is not None:
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def get_input_embeddings(self) -> nn.Module:
try:
return self.embeddings.word_embeddings
except AttributeError:
return self.esm.embeddings.word_embeddings
class FAST_ESM_ENCODER(FastEsmPreTrainedModel, EmbeddingMixin):
def __init__(self, config, add_pooling_layer: Optional[bool] = True, **kwargs):
FastEsmPreTrainedModel.__init__(self, config, **kwargs)
self.config = config
self.embeddings = EsmEmbeddings(config)
self.encoder = EsmEncoder(config)
self.contact_head = EsmContactPredictionHead(
in_features=config.num_hidden_layers * config.num_attention_heads, bias=True
)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _embed(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
token_embedding_output = self.embeddings(input_ids, attention_mask=attention_mask)
batch_size, seq_length = input_ids.shape
if attention_mask is not None:
extended_attention_mask = attention_mask[:, None, None, :].expand(
batch_size, 1, seq_length, seq_length
).bool()
else:
extended_attention_mask = None
encoder_outputs = self.encoder(
token_embedding_output,
attention_mask=extended_attention_mask,
output_hidden_states=False,
output_attentions=False,
)
return encoder_outputs.last_hidden_state
def predict_contacts(self, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
attns = self(input_ids, attention_mask=attention_mask, output_attentions=True).attentions
attns = torch.stack(attns, dim=1)
attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(3)
attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(4)
return self.contact_head(input_ids, attns)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, # to play nice with HF adjacent packages
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
"""Forward pass for base model.
Args:
input_ids: Input token IDs
attention_mask: Optional attention mask
position_ids: Optional position IDs
inputs_embeds: Optional input embeddings
output_hidden_states: Whether to return all hidden states
output_attentions: Whether to return attention weights
Returns:
Model outputs including hidden states and optionally attention weights
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
token_embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
)
if attention_mask is not None:
extended_attention_mask = attention_mask[:, None, None, :].expand(
batch_size, 1, seq_length, seq_length
).bool()
else:
extended_attention_mask = None
encoder_outputs = self.encoder(
token_embedding_output,
attention_mask=extended_attention_mask,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
)
sequence_output = encoder_outputs.last_hidden_state
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class FastEsmModel(FastEsmPreTrainedModel, EmbeddingMixin):
def __init__(self, config, add_pooling_layer: Optional[bool] = True, **kwargs):
FastEsmPreTrainedModel.__init__(self, config, **kwargs)
self.config = config
self.esm = FAST_ESM_ENCODER(config)
self.pooler = EsmPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _embed(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
return self.esm._embed(input_ids, attention_mask)
def predict_contacts(self, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
return self.esm.predict_contacts(input_ids, attention_mask=attention_mask)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, # to play nice with HF adjacent packages
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
"""Forward pass for base model.
Args:
input_ids: Input token IDs
attention_mask: Optional attention mask
position_ids: Optional position IDs
inputs_embeds: Optional input embeddings
output_hidden_states: Whether to return all hidden states
output_attentions: Whether to return attention weights
Returns:
Model outputs including hidden states and optionally attention weights
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
outputs = self.esm(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
)
sequence_output = outputs.last_hidden_state
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class FastEsmForMaskedLM(FastEsmPreTrainedModel, EmbeddingMixin):
_tied_weights_keys = ["lm_head.decoder.weight"]
def __init__(self, config, **kwargs):
FastEsmPreTrainedModel.__init__(self, config, **kwargs)
self.esm = FAST_ESM_ENCODER(config, add_pooling_layer=False)
self.lm_head = EsmLMHead(config)
self.loss_fct = nn.CrossEntropyLoss()
self.init_weights()
def get_output_embeddings(self):
return self.lm_head.decoder
def set_output_embeddings(self, new_embeddings):
self.lm_head.decoder = new_embeddings
def _embed(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
return self.esm._embed(input_ids, attention_mask)
def predict_contacts(self, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
return self.esm.predict_contacts(input_ids, attention_mask=attention_mask)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, # to play nice with HF adjacent packages
) -> Union[Tuple, EsmMaskedLMOutput]:
outputs = self.esm(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
)
sequence_output = outputs.last_hidden_state
prediction_scores = self.lm_head(sequence_output)
loss = None
if labels is not None:
labels = labels.to(prediction_scores.device)
loss = self.loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
return EsmMaskedLMOutput(
loss=loss,
logits=prediction_scores,
last_hidden_state=sequence_output,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class FastEsmForSequenceClassification(FastEsmPreTrainedModel, EmbeddingMixin):
def __init__(self, config, **kwargs):
FastEsmPreTrainedModel.__init__(self, config, **kwargs)
self.num_labels = config.num_labels
self.config = config
self.esm = FAST_ESM_ENCODER(config, add_pooling_layer=False)
self.classifier = EsmClassificationHead(config)
self.mse = nn.MSELoss()
self.ce = nn.CrossEntropyLoss()
self.bce = nn.BCEWithLogitsLoss()
self.init_weights()
def _embed(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
return self.esm._embed(input_ids, attention_mask)
def predict_contacts(self, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
return self.esm.predict_contacts(input_ids, attention_mask=attention_mask)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None
) -> Union[Tuple, SequenceClassifierOutput]:
outputs = self.esm(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
sequence_output = outputs.last_hidden_state
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
if self.num_labels == 1:
loss = self.mse(logits.squeeze(), labels.squeeze())
else:
loss = self.mse(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss = self.ce(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss = self.bce(logits, labels)
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class FastEsmForTokenClassification(FastEsmPreTrainedModel, EmbeddingMixin):
def __init__(self, config, **kwargs):
FastEsmPreTrainedModel.__init__(self, config, **kwargs)
self.num_labels = config.num_labels
self.esm = FAST_ESM_ENCODER(config, add_pooling_layer=False)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
self.loss_fct = nn.CrossEntropyLoss()
self.init_weights()
def _embed(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
return self.esm._embed(input_ids, attention_mask)
def predict_contacts(self, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
return self.esm.predict_contacts(input_ids, attention_mask=attention_mask)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None
) -> Union[Tuple, TokenClassifierOutput]:
outputs = self.esm(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
sequence_output = outputs.last_hidden_state
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
labels = labels.to(logits.device)
loss = self.loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
if __name__ == "__main__":
"""
Test the hidden state differences between the FastEsmModel and the HF EsmModel.
In full precision, the differences are very very small, but nonzero due to floating point issues with F.scaled_dot_product_attention.
In Pytorch 2.5+ (and linux kernel), this implementation is very fast and uses less memory than the HF implementation.
"""
import random
from transformers import EsmForMaskedLM as TransformersEsmModel, EsmTokenizer
model_paths = [
"facebook/esm2_t6_8M_UR50D",
"facebook/esm2_t12_35M_UR50D",
#"facebook/esm2_t30_150M_UR50D",
#"facebook/esm2_t33_650M_UR50D",
]
canonical_amino_acids = "ACDEFGHIKLMNPQRSTVWY"
length = 64
seq_count = 100
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tolerances = [1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8]
def generate_random_sequence(length: int) -> str:
return 'M' + "".join(random.choices(canonical_amino_acids, k=length))
print("Percentage of hidden states that are within the tolerance:")
for model_path in model_paths:
print(f"Testing {model_path}...")
tokenizer = EsmTokenizer.from_pretrained(model_path)
config = FastEsmConfig.from_pretrained(model_path)
fast_model = FastEsmForMaskedLM(config).from_pretrained(model_path).to(device)
print('fast model')
print(fast_model)
model = TransformersEsmModel.from_pretrained(model_path, token_dropout=False).to(device)
print('transformers model')
print(model)
counts = [0] * len(tolerances)
for _ in range(seq_count):
example_seq = generate_random_sequence(length)
fast_tokens = tokenizer(example_seq, return_tensors="pt").input_ids.to(device)
fast_output = fast_model(fast_tokens, output_hidden_states=True).hidden_states[-1].detach().cpu()
model_tokens = tokenizer(example_seq, return_tensors="pt").input_ids.to(device)
model_output = model(model_tokens, output_hidden_states=True).hidden_states[-1].detach().cpu()
for i, atol in enumerate(tolerances):
if torch.allclose(fast_output, model_output, atol=atol):
counts[i] += 1
print(f"{model_path}:")
for i, atol in enumerate(tolerances):
print(f" tolerance={atol}: {counts[i] / seq_count * 100}%")
model.cpu()
fast_model.cpu()
del model
del fast_model
torch.cuda.empty_cache()
|